Optical imaging is an emerging strategy for and visualization of the molecular mechanisms of cancer over time. An increasing number of optical imaging contrast agents and techniques have been developed in recent years specifically for bone research and skeletal metastases. Visualizing molecular processes in relation to bone remodeling in metastasized cancers provides valuable information for understanding disease mechanisms and monitoring expression of primary molecular targets and therapeutic efficacy. This review is intended to provide an overview of tumor-specific and non-specific contrast agents in the first near-infrared window (NIR-I) window from 650 nm to 950 nm that can be used to study functional and structural aspects of skeletal remodeling of cancer in preclinical animal models. Near-infrared (NIR) optical imaging techniques, specifically NIR spectroscopy and photoacoustic imaging, and their use in skeletal metastases will also be discussed. Perspectives on the promises and challenges facing this exciting field are then given.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611980 | PMC |
http://dx.doi.org/10.1016/j.jbo.2019.100249 | DOI Listing |
Sensors (Basel)
December 2024
Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
This paper presents a lens-free imaging approach utilizing an array of light sources, capable of measuring the dielectric properties of many particles simultaneously. This method employs coplanar electrodes to induce velocity changes in flowing particles through dielectrophoretic forces, allowing the inference of individual particle properties from differential velocity changes. Both positive and negative forces are detectable.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Group of Quality Assurance and Industrial Image Processing, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Gustav-Kirchhoff-Platz 2, 98693 Ilmenau, Germany.
Multispectral imaging (MSI) enables the acquisition of spatial and spectral image-based information in one process. Spectral scene information can be used to determine the characteristics of materials based on reflection or absorption and thus their material compositions. This work focuses on so-called multi aperture imaging, which enables a simultaneous capture (snapshot) of spectrally selective and spatially resolved scene information.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
National Research Council-National Institute of Optics, Largo E. Fermi, 6, 50125 Florence, Italy.
Understanding the deterioration processes in wooden artefacts is essential for accurately assessing their conservation status and developing effective preservation strategies. Advanced imaging techniques are currently being explored to study the impact of chemical changes on the structural and mechanical properties of wood. Nonlinear optical modalities, including second harmonic generation (SHG) and two-photon excited fluorescence (TPEF), combined with fluorescence lifetime imaging microscopy (FLIM), offer a promising non-destructive diagnostic method for evaluating lignocellulose-based materials.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.
Photoacoustic imaging has emerged as a promising modality for medical imaging since its introduction. Photoacoustic microscopy (PAM), which is based on the photoacoustic effect, combines the advantages of both optical and acoustic imaging modalities. PAM facilitates high-sensitivity, high-resolution, non-contact, and non-invasive imaging by employing optical absorption as its primary contrast mechanism.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry, RCSI, University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin 2, D02 YN77 Dublin, Ireland.
The term "fluorescence" was first proposed nearly two centuries ago, yet its application in clinical medicine has a relatively brief history coming to the fore in the past decade. Nowadays, as fluorescence is gradually expanding into more medical applications, fluorescence image-guided surgery has become the new arena for this technology. It allows surgical teams to real-time visualize target tissues or anatomies intraoperatively to increase the precision of resection or preserve vital structures during open or laparoscopic surgeries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!