Sulfonamide drugs are well known antibacterial and antimicrobial molecules for pharmaceutical development. Building a library of suitable supramolecular synthons for the sulfonamide functional group and understanding their crystal structures with partner coformer molecules continues to be a challenge in crystal engineering. Although a few sulfonamide cocrystals with amides and -oxides have been reported, the body of work on sulfonamide synthons is limited compared with those that have carb-oxy-lic acids and carboxamides. To address this structural gap, the present work is primarily focused on sulfonamide-lactam and sulfonamide--amide synthons with drugs such as celecoxib, hydro-chloro-thia-zide and furosemide. Furthermore, the electrostatic potential of previously reported cocrystals has been recalculated to show that the negative electrostatic potential on the lactam and -amide O atom is higher compared with the charge on carboxamide and pyridine -oxide O atoms. The potential of sulfonamide molecules to form cocrystals with -amides and lactams are evaluated in terms of the electrostatic potential energy for the designed supramolecular synthons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608642 | PMC |
http://dx.doi.org/10.1107/S2052252519005037 | DOI Listing |
Int J Nanomedicine
January 2025
School of Basic Medicine, Ningxia Medical University, Yinchuan, People's Republic of China.
Background: Colorectal cancer (CRC) is a highly malignant and aggressive gastrointestinal tumor. Due to its weak immunogenicity and limited immune, cell infiltration lead to ineffective clinical outcomes. Therefore, to improve the current prophylaxis and treatment scheme, offering a favorable strategy efficient against CRC is urgently needed.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.
A one-step hydrothermal method was applied to prepare carbon dots (CDs) with superior fluorescence properties using chitosan as a carbon source. The as-prepared carbon dots were then grafted onto a sodium alginate-gelatin hydrogel film to form a fluorescent hydrogel film (FHGF), emitting at 450 nm under excitation of 350 nm light. In comparison to the CDs, the fluorescence intensity of this film was maintained over 90.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
College of Marine and Environmental Science, Tianjin University of Science and Technology, Tianjin 300457, China.
Humic acid (HA) enhances colloidal transport in porous media, yet the mechanisms by which the HA adsorption conformation affects colloid transport remain unclear. This study investigated the influence of HA on the transport of petroleum-hydrocarbon-contaminated soil colloids (TPHs-SC) in saturated sand columns. The presence of TPHs on the colloidal surface occupied adsorption sites, hindering HA from forming a horizontal adsorption conformation, as observed on uncontaminated soil colloids (SC).
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.
Ion optics are crucial for spectrometric methods such as mass spectrometry (MS) and ion mobility spectrometry (IMS). Among the wide selection of ion optics, temporal ion gates are of particular importance for time-of-flight MS (TOF-MS) and drift-tube IMS. Commonly implemented as electrostatic ion gates, these optics offer a rapid, efficient means to block ion beams and form discrete ion packets for subsequent analysis.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!