Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although the underlying mechanism of stress remains unknown, it has been associated with the pathophysiology of gastroesophageal reflux diseases, the development of which appear to be accelerated by oxidative stress and fibrosis. The aim of the current study was to investigate the effect of chronic restraint stress on esophageal oxidative stress and fibrosis, as well as the impact of oxidative stress in a murine model whereby 8-week old C57BL/6J male mice were subjected to intermittent chronic restraint stress for a two-week period. The current study demonstrated that chronic restraint stress significantly reduced the body weight of mice compared with the control group. Although chronic restraint stress did not significantly alter the levels of triglycerides or cholesterol, free fatty acid concentration was significantly increased compared with the control group. Furthermore, chronic restraint stress significantly upregulated the expression levels of several fibrotic biomarkers including collagen type I, transforming growth factor β-1, α-smooth muscle actin and SMAD-3 compared with the control group. In addition, the expression levels of the reactive oxygen species (ROS) NADPH oxidase-4 and malondialdehyde were significantly increased, while the expression levels of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 were significantly decreased in esophageal tissue from mice in the chronic restraint stress group compared with the control group. In conclusion, chronic restraint stress may induce esophageal fibrosis by accumulating ROS and increasing fibrotic gene expression in a murine model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601379 | PMC |
http://dx.doi.org/10.3892/etm.2019.7669 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!