Objective Weibel-Palade bodies (WPBs) are endothelial cell (EC)-specific organelles formed by vWF (von Willebrand factor) polymerization and that contain the proangiogenic factor Ang-2 (angiopoietin-2). WPB exocytosis has been shown to be implicated for vascular repair and inflammatory responses. Here, we investigate the role of WPBs during angiogenesis and vessel stabilization. Approach and Results WPB density in ECs decreased at the angiogenic front of retinal vascular network during development and neovascularization compared with stable vessels. In vitro, VEGF (vascular endothelial growth factor) induced a VEGFR-2 (vascular endothelial growth factor receptor-2)-dependent exocytosis of WPBs that contain Ang-2 and consequently the secretion of vWF and Ang-2. Blocking VEGF-dependant WPB exocytosis and Ang-2 secretion promoted pericyte migration toward ECs. Pericyte migration was inhibited by adding recombinant Ang-2 or by silencing Ang-1 (angiopoietin-1) or Tie2 (angiopoietin-1 receptor) in pericytes. Consistently, in vivo anti-VEGF treatment induced accumulation of WPBs in retinal vessels because of the inhibition of WPB exocytosis and promoted the increase of pericyte coverage of retinal vessels during angiogenesis. In tumor angiogenesis, depletion of WPBs in vWF knockout tumor-bearing mice promoted an increase of tumor angiogenesis and a decrease of pericyte coverage of tumor vessels. By another approach, normalized tumor vessels had higher WPB density. Conclusions We demonstrate that WPB exocytosis and Ang-2 secretion are regulated during angiogenesis to limit pericyte coverage of remodeling vessels by disrupting Ang-1/Tie2 autocrine signaling in pericytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/ATVBAHA.119.313021 | DOI Listing |
bioRxiv
September 2024
Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
Ras-like (Ral) GTPases play essential regulatory roles in many cellular processes, including exocytosis. Cycling between GDP- and GTP-bound states, Ral GTPases function as molecular switches and regulate effectors, specifically the multi-subunit tethering complex exocyst. Here, we show that Ral isoform RalB controls regulated exocytosis of Weibel-Palade bodies (WPBs), the specialized endothelial secretory granules that store hemostatic protein von Willebrand factor.
View Article and Find Full Text PDFBlood Adv
June 2024
Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.
von Willebrand factor (VWF) undergoes complex posttranslational modification within endothelial cells (ECs) before secretion. This includes significant N- and O-linked glycosylation. Previous studies have demonstrated that changes in N-linked glycan structures significantly influence VWF biosynthesis.
View Article and Find Full Text PDFAdv Sci (Weinh)
April 2024
Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, von-Esmarch-Str. 56, 48149, Muenster, Germany.
Weibel Palade bodies (WPB) are lysosome-related secretory organelles of endothelial cells. Commonly known for their main cargo, the platelet and leukocyte receptors von-Willebrand factor (VWF) and P-selectin, WPB play a crucial role in hemostasis and inflammation. Here, the authors identify the glycerophosphodiester phosphodiesterase domain-containing protein 5 (GDPD5) as a WPB cargo protein and show that GDPD5 is transported to WPB following uptake from the plasma membrane via an unique endocytic transport route.
View Article and Find Full Text PDFJ Thromb Haemost
May 2024
Hematology, Erasmus MC University Medical Center, Rotterdam, The Netherlands. Electronic address:
Endothelial cells, forming a monolayer along blood vessels, intricately regulate vascular hemostasis, inflammatory responses, and angiogenesis. A key determinant of these functions is the controlled secretion of Weibel-Palade bodies (WPBs), which are specialized endothelial storage organelles housing a presynthesized pool of the hemostatic protein von Willebrand factor and various other hemostatic, inflammatory, angiogenic, and vasoactive mediators. This review delves into recent mechanistic insights into WPB biology, including the biogenesis that results in their unique morphology, the acquisition of intraluminal vesicles and other cargo, and the contribution of proton pumps to organelle acidification.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2024
Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, China (J.M., Z.H., W.L.).
Background: Weibel-Palade bodies (WPBs) are endothelial cell-specific cigar-shaped secretory organelles containing various biologically active molecules. WPBs play crucial roles in thrombosis, hemostasis, angiogenesis, and inflammation. The main content of WPBs is the procoagulant protein vWF (von Willebrand factor).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!