There are few reports about the clinical results of proton beam therapy for esophageal cancer in a large population. The purpose of this study was to evaluate the clinical results of proton beam therapy for esophageal cancer in a large population using a multicentered database. Between January 2009 and December 2013, patients newly diagnosed with esophageal cancer and who had received proton beam therapy were retrospectively recruited from a database of four proton beam therapy centers in Japan. Two hundred and two patients (including 90 inoperable patients) fulfilled the inclusion criteria, and 100 patients (49.5%) had stage III/IV cancer (Union for International Cancer Control 8th). The 3-year and 5-year overall survival rate was 66.7% and 56.3%, respectively. The five-year local control rate was 64.4%. There were two patients with grade three pericardial effusion (1%) and a patient with grade three pneumonia (0.5%). No grade 4 or higher cardiopulmonary toxicities were observed (Common Terminology Criteria for Adverse Events version 4.0). This study suggests that proton beam therapy for esophageal cancer was not inferior in efficacy and had lower rates of toxicities in comparison to photon radiotherapy. Therefore, proton beam therapy can serve as an alternate treatment for patients with esophageal cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679064 | PMC |
http://dx.doi.org/10.3390/cancers11070993 | DOI Listing |
J Radiat Res
January 2025
Department of Radiation Oncology, Southern Tohoku Proton Therapy Center 7-172, Yatsuyamada, Koriyama, Fukushima 963-8052, Japan.
This retrospective study aimed to compare the clinical outcomes of intensity-modulated radiation therapy (IMRT) and proton beam therapy (PBT). A total of 606 patients diagnosed with prostate cancer between January 2008 and December 2018 were included. Of these patients, 510 received PBT up to a dose of 70-78 Gy (relative biological effectiveness) and 96 patients received IMRT up to a dose of 70-78 Gy.
View Article and Find Full Text PDFInt J Part Ther
March 2025
Institute of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen, Germany.
Purpose: The spot size of scanned particle beams is of crucial importance for the correct dose delivery and, therefore, plays a significant role in the quality assurance (QA) of pencil beam scanning ion beam therapy.
Materials And Methods: This study compares 5 detector types-radiochromic film, ionization chamber (IC) array, flat panel detector, multiwire chamber, and IC-for measuring the spot size of proton and carbon ion beams.
Results: Variations of up to 30% were found between detectors, underscoring the impact of detector choice on QA outcomes.
Med Phys
January 2025
Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA.
Purpose: In locations where the proton energy spectrum is broad, lineal energy spectrum-based proton biological effects models may be more accurate than dose-averaged linear energy transfer (LET) based models. However, the development of microdosimetric spectrum-based biological effects models is hampered by the extreme computational difficulty of calculating microdosimetric spectra. Given a precomputed library of lineal energy spectra for monoenergetic protons, a weighted summation can be performed which yields the lineal energy spectrum of an arbitrary polyenergetic beam.
View Article and Find Full Text PDFBackground And Purpose: Radiation induced image changes (IC) on MRI have been observed after proton therapy for brain tumours. This study aims to create predictive models, with and without taking into account patient variation, based on dose, linear energy transfer (LET) and periventricular zone (PVZ) in a national cohort of patients with glioma treated with pencil beam scanning (PBS).
Materials And Methods: A cohort of 87 consecutive patients with oligodendroglioma or astrocytoma (WHO grade 2-4) treated with PBS from January 2019 to December 2021 was included.
Phys Imaging Radiat Oncol
October 2024
Aarhus University Hospital, Danish Centre for Particle Therapy, Aarhus N, Denmark.
Background And Purpose: Radiotherapy for paediatric posterior fossa tumours may cause complications in the brainstem and upper spinal cord due to high doses. With proton therapy (PT) this risk may increase due to higher relative biological effectiveness (RBE) from elevated linear energy transfer (LET). This study assesses variations in LET in the brainstem and spinal cord in proton treatment plans from European centres.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!