Diphosphahexaarenes are highly stable π-extended frameworks containing two six-membered phosphorus heterocycles that have emerged recently. Herein, we present a detailed investigation on the post-functionalization reactions of their phosphorus centers with special emphasis on the selectivity of the processes and the impact of the phosphorus functionalizations into the physicochemical properties. These studies reveal that indeed the phosphorus atoms of the diphosphahexaarenes are readily available to be functionalized with quaternizing and oxidizing agents as well as borane groups without compromising the stability of the system. In addition, the optoelectronic properties of the diphosphahexaarenes are impacted by the phosphorus post-modifications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851889 | PMC |
http://dx.doi.org/10.1002/chem.201901837 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
Single nanoparticle analysis is crucial for various applications in biology, materials, and energy. However, precisely profiling and monitoring weakly scattering nanoparticles remains challenging. Here, it is demonstrated that deep learning-empowered plasmonic microscopy (Deep-SM) enables precise sizing and collision detection of functional chemical and biological nanoparticles.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Argonne National Laboratory, Lemont, Illinois 60439, United States.
The electrification of the transport sector is crucial for reducing greenhouse gas emissions and the reliance on fossil fuels. Battery electric vehicles (BEVs) depend on critical materials (CMs) for their batteries and electronic components, yet their widespread adoption may face constraints due to the limited availability of CMs. This study assesses the implications of vehicle electrification and lightweighting (material substitution) on the U.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
Binuclear silver(I) and copper(I) complexes, and , with bridging diphenylphosphine ligands were prepared. In , the silver(I) center is located inside a trigonal plane composed of three phosphorus donors from three separate and bridging dppm ligands. The fourth coordination site is filled with neighboring silver(I) ions.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
Development of radiosensitizers with high-energy deposition efficiency, electron transfer, and oxidative stress amplification will help to improve the efficiency of radiotherapy. To overcome the drawbacks of radiotherapy alone, it is also crucial to design a multifunctional radiosensitizer that simultaneously realizes multimodal treatment and tumor microenvironment modulation. Herein, a multifunctional radiosensitizer based on the CuBiS-BP@PEI nanoheterostructure (NHS) for multimodal cancer treatment is designed.
View Article and Find Full Text PDFOrg Lett
January 2025
College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, P. R. China.
We synthesized a series of polychlorinated trityl radical substituted phenylphosphines. Through UV-vis photoluminescence (PL) spectroscopy and cyclic voltammetry, we explored the influence of the chemical modifications (oxidation/reduction, coordination, and methylation) of the phosphorus center(s) on tuning the optical and redox properties of the tris(2,4,6-trichlorophenyl)methyl (TTM) radical framework. Those compounds hold promise for applications in coordination chemistry and luminescent materials, particularly in systems where both radical and phosphine-based functionalities can be leveraged for innovative properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!