Blind Search for Complex Chemical Pathways Using Harmonic Linear Discriminant Analysis.

J Chem Theory Comput

Department of Chemistry and Applied Biosciences , ETH Zurich , c/o USI Campus, Via Giuseppe Buffi 13 , CH-6900 , Lugano , Ticino , Switzerland.

Published: August 2019

Disentangling the mechanistic details of a chemical reaction pathway is a hard problem that often requires a considerable amount of chemical intuition and a component of luck. Experiments struggle in observing short-life metastable intermediates, while computer simulations often rely upon a good initial guess. In this work, we propose a method that, from the simulations of a reactant and a product state, searches for reaction mechanisms connecting the two by exploring the configuration space through metadynamics, a well-known enhanced molecular dynamics method. The key quantity underlying this search is based on the use of an approach called harmonic linear discriminant analysis which allows a systematic construction of collective variables. Given the reactant and product states, we choose a set of descriptors capable of discriminating between the two states. In order to not prejudge the results, generic descriptors are introduced. The fluctuations of the descriptors in the two states are used to construct collective variables. We use metadynamics in an exploratory mode to discover the intermediates and the transition states that lead from reactant to product. The search is at first conducted at a low theory level. The calculation is then refined, and the energy of the intermediates and transition states discovered during metadynamics is computed again using a higher level of theory. The method's aim is to offer a simple reaction mechanism search procedure that helps in saving time and is able to find unexpected mechanisms that defy well established chemical paradigms. We apply it to two reactions, showing that a high level of complexity can be hidden even in seemingly trivial and small systems. The method can be applied to larger systems, such as reactions in solution or catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.9b00358DOI Listing

Publication Analysis

Top Keywords

reactant product
12
harmonic linear
8
linear discriminant
8
discriminant analysis
8
collective variables
8
intermediates transition
8
transition states
8
states
5
blind search
4
search complex
4

Similar Publications

The efficient hydrogenation of 1-butene is an industrially significant reaction for producing fuels and value-added chemicals. However, achieving high catalytic efficiency and stability remains challenging, particularly for cost-effective materials, such as Ni. In this study, we developed a porous Ni-coated Ni foam catalyst by electrostatic spray deposition to address these challenges.

View Article and Find Full Text PDF

Magnesium slag is a by-product of the magnesium industry. As an auxiliary cementitious material incorporated into concrete, it can make full use of waste resources and has a certain potential for hydration and carbonation. To improve the mechanical properties of the concrete, the influence mechanism and strengthening mechanism of the carbon curing method on mechanical properties of magnesium slag concrete were investigated.

View Article and Find Full Text PDF

Bottom-up syntheses of carbon nanodots (CND) using solvothermal treatment of citric acid are known to afford nanometer-sized, amorphous polycitric acid-based materials. The addition of suitable co-reactants in the form of in-situ synthesized N-hetero-π-conjugated chromophores facilitates hereby the overall functionalization. Our incentive was to design a CND model that features phenazine (P-CND) - a well-known N-hetero-π-conjugated chromophore - to investigate the influence of the CND matrix on its redox chemistry as well as photochemistry.

View Article and Find Full Text PDF

Single-Atom-Induced Hybridization States Promote the Direct Trapping of Hot Carriers by Reactants for Photocatalysis.

J Phys Chem Lett

January 2025

Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China.

Single-atom manipulation has emerged as an effective strategy for enhancing the photocatalytic efficiency. However, the mechanism of photogenerated carrier dynamics under single-atom modulation remains unclear. Combining first-principles calculations and non-adiabatic molecular dynamics simulations, we systematically studied carrier transfer and recombination in the oxygen reduction reaction of single-atom-doped CN systems.

View Article and Find Full Text PDF

Low-potential bionic electrochemiluminescence sensing platform based on SnS/CuNWs synergistic promotion for highly selective detection of glycocholic acid.

Anal Chim Acta

January 2025

Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:

Background: Glycholic acid (GCA) can dynamically reflect the process of liver injury, and can be used for early diagnosis and curative effect evaluation of early hepatitis and cirrhosis. The highly sensitive detection of liver injury markers is conducive to a more accurate and effective auxiliary diagnosis of liver diseases. In addition, the low trigger potential helps to avoid more chemical interference and improve the detection sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!