Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Increased protein solubility is known to correlate with an increase in the proportion of lysine over arginine residues. Previous work has shown that the aggregation propensity of a single-chain variable fragment (scFv) does not correlate with its conformational stability or native-state protein-protein interactions. Here, we test the hypothesis that aggregation is driven by the colloidal stability of partially unfolded states, studying the behavior of scFv mutants harboring single or multiple site-specific arginine to lysine mutations in denaturing buffers. In 6 M guanidine hydrochloride (GdmCl) or 8 M urea, repulsive protein-protein interactions were measured for the wild-type and lysine-enriched (4RK) scFvs reflecting weakened short-range attractions and increased excluded volume. In contrast to the arginine-enriched mutant (7KR) scFv exhibited strong reversible association. In 3 M GdmCl, the minimum concentration at which the scFvs were unfolded, the hydrodynamic radius of 4RK remained constant but increased for the wild type and especially for 7KR. Studies of single-point arginine to lysine scFv mutants indicated that the observed aggregation propensity of arginine under denaturing conditions was nonspecific. Interestingly, one such swap generated a scFv with especially low aggregation rates under low/high ionic strengths and denaturing buffers; molecular modeling identified hydrogen bonding between the arginine side chain and main chain peptide groups, stabilizing the structure. The arginine/lysine ratio is not routinely considered in biopharmaceutical scaffold design or current amyloid prediction methods. This work therefore suggests a simple method for increasing the stability of a biopharmaceutical protein against aggregation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.9b00367 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!