Intake of fructose-containing sugars is epidemiological and experimentally linked to metabolic syndrome (MS). We recently verified that the dietary polyphenol chrysin was able to abolish some of the metabolic changes induced by fructose-feeding in the rat. Because the role of the intestine upon fructose-induced MS is poorly understood, we decided to investigate the influence of fructose, in vivo, on the intestinal environment and the ability of chrysin to interfere with the putative observed changes. For this, adult male Sprague-Dawley rats were treated for 18 weeks as follows: (A) tap water (CONT), (B) tap water and chrysin (100 mg kg day) (CHRY), (C) 10% fructose in tap water (FRUCT), and (D) 10% fructose in tap water and chrysin (100 mg kg day) (FRUCT + CHRY). Our findings show that the relative expression of SGLT1 and GLUT2 mRNA were not affected by fructose-feeding and/or chrysin. In contrast, GLUT5 mRNA expression was markedly increased in fructose-fed animals, and this effect was reduced by chrysin. However, the apparent permeability to C-FRUCT was markedly and similarly decreased in FRUCT, CHRY and FRUCT + CHRY rats. Jejunal villus width and crypt depth were significantly higher in FRUCT and FRUCT + CHRYS rats, respectively. Finally, chrysin did not alter gut microbiota composition, but fructose significantly increased Lactobacillus and E. coli. Moreover, FRUCT + CHRY rats had an increase on the Firmicutes to Bacteroidetes ratio. This is the first report showing that chrysin is able to interfere with the effects of fructose at the intestinal level, which may contribute to the fructose-induced MS features.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9fo01142kDOI Listing

Publication Analysis

Top Keywords

tap water
16
fruct chry
16
chrysin
9
intestinal environment
8
induced fructose-feeding
8
chrysin interfere
8
water chrysin
8
chrysin 100
8
100 day
8
10% fructose
8

Similar Publications

Occurrence of in drinking water sources and antimicrobial resistance profile in the central region of Peru.

Heliyon

January 2025

Laboratorio de Investigación de Aguas, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla N° 3989-4089, Huancayo, Peru.

Introduction: Contamination of drinking water by can cause serious diseases, including cancer. The determinants of the infection rate are socioeconomic status, low standard of living and overcrowding. In addition, exposure to environmental sources contaminated with feces, such as water and vegetables, is another risk factor for infection.

View Article and Find Full Text PDF

Anions play a crucial role in various environmental, chemical, and biological processes. Among various anions, the production of perchlorate (ClO ) ion is expected to rise in upcoming years, and thus, an efficient method for the detection of perchlorate ion is highly desirable. In this effort, a pyridyl-benzimidazole-based luminescent probe (RSB1) containing two N-H donor sites has been synthesized for selective detection of perchlorate ion.

View Article and Find Full Text PDF

Aptamer-based fluorescence biosensor for rapid detection of chloramphenicol based on pyrene excimer switch.

Anal Bioanal Chem

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.

Chloramphenicol (CAP) is widely used in treating bacteria infection in animals and humans. However, the accumulation of CAP in food and environment caused serious health risk to human. Consequently, sensitive and selective detection of CAP is of great importance in environmental monitoring and food safety.

View Article and Find Full Text PDF

Rapid detection of hydrogen peroxide and nitrite in adulterated cow milk using enzymatic and nonenzymatic methods on a reusable platform.

RSC Adv

January 2025

Environmental Biotechnology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District Hyderabad 500078 India

Cow milk is readily adulterated due to its complex properties that can emulsify many adulterants. Among the commonly used adulterants in cow milk are hydrogen peroxide (HP) and nitrite. Commercially available HP is added to extend cow milk's shelf life, while nitrite enters through the tap or pond water added to increase cow milk's volume.

View Article and Find Full Text PDF

Real-World Implementation of Particle-Based Microfluidics: On-Spot Test for Iron and Copper Ions in Water.

ACS Omega

January 2025

Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, Ravila 14a, 50411Tartu, Estonia.

Water is an essential part of everyday life, and similarly, numerous industries depend on it. Regular water analysis is needed for both home use and in more specific fields, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!