Suppressing the dark side of autophagy.

Autophagy

Department of Medicine, Diabetes Unit, and Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston , MA , USA.

Published: October 2019

A wide variety of genetic, pharmacological and nutrient manipulations that extend lifespan in model organisms do so in a manner dependent upon increased autophagic flux. However, our recent findings suggest that when mitochondrial membrane integrity is compromised, macroautophagy/autophagy can be detrimental. In lacking the serine/threonine kinase mechanistic target of rapamycin kinase complex 2 and its downstream effector SGK-1 (Serum- and Glucocorticoid-inducible Kinase homolog), lifespan is shortened in spite of increased levels of autophagy, whereas reducing autophagy restores normal lifespan. This is due to a concomitant defect in mitochondrial permeability in mutants defective in either SGK-1 or mechanistic target of rapamycin kinase complex 2, attributable to increased VDAC-1 (VDAC Voltage Dependent Anion Channel homolog) protein level. More generally, we find that induction of mitochondrial permeability reverses each and every tested paradigm of autophagy-dependent lifespan extension and, further, exacerbates ischemia-reperfusion injury. In this punctum, we discuss our finding that autophagy with increased mitochondrial permeability is a detrimental combination conserved from nematode to mammals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735539PMC
http://dx.doi.org/10.1080/15548627.2019.1644077DOI Listing

Publication Analysis

Top Keywords

mitochondrial permeability
12
mechanistic target
8
target rapamycin
8
rapamycin kinase
8
kinase complex
8
suppressing dark
4
dark side
4
autophagy
4
side autophagy
4
autophagy wide
4

Similar Publications

Background: Obesity and overweight are associated with low-grade inflammation induced by adipose tissue expansion and perpetuated by altered intestinal homeostasis, including increased epithelial permeability. Intestinal epithelium functions are supported by intestinal epithelial cells (IEC) mitochondria function.

Methods And Results: Here, we report that diet-induced obesity (DIO) in mice induces lipid metabolism adaptations favoring lipid storage in IEC together with reduced number, altered dynamics and diminished oxidative phosphorylation activity of IEC mitochondria.

View Article and Find Full Text PDF

RIPK3 activation of CaMKII triggers mitochondrial apoptosis in NIBV-infected renal tubular epithelial cells.

Vet Microbiol

January 2025

Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China. Electronic address:

The purpose of this study was to investigate whether RIPK3-mediated programmed cell death can promote the replication and transmission of renal infectious bronchitis virus in renal tubular epithelial cells. Primary renal tubular epithelial cells were extracted from 1 to 7 day old Hy-Line Brown chicks, cultured in vitro by type I collagenase digestion, and infected with 1MOI SX9 strain. Cell samples were collected at 12 hpi, 24 hpi, 36 hpi and 48 hpi for experimental exploration.

View Article and Find Full Text PDF

The permeability transition (PT) is a permeability increase of the mitochondrial inner membrane causing mitochondrial swelling in response to matrix Ca. The PT is mediated by regulated channel(s), the PT pore(s) (PTP), which can be generated by at least two components, adenine nucleotide translocator (ANT) and ATP synthase. Whether these provide independent permeation pathways remains to be established.

View Article and Find Full Text PDF

Validation of a Coarse-Grained Martini 3 Model for Molecular Oxygen.

J Chem Theory Comput

January 2025

IBiTech - BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance 98, 9000 Gent, Belgium.

Molecular oxygen (O) is essential for life, and continuous effort has been made to understand its pathways in cellular respiration with all-atom (AA) molecular dynamics (MD) simulations of, e.g., membrane permeation or binding to proteins.

View Article and Find Full Text PDF

Microenvironment-induced programmable nanotherapeutics restore mitochondrial dysfunction for the amelioration of non-alcoholic fatty liver disease.

Acta Biomater

January 2025

Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China. Electronic address:

Nonalcoholic fatty liver disease (NAFLD) is a metabolic liver disorder with severe complications. Mitochondrial dysfunction due to over-opening of the mitochondrial permeability transition pore (mPTP) in liver cells plays a central role in the development and progression of NAFLD. Restoring mitochondrial function is a promising strategy for NAFLD therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!