Three chiral bicyclic pillar[5]arene derivatives termed as molecular universal joints (MUJs), were synthesized and separated enantiomerically. These MUJs showed temperature-driven chirality switching in certain solvents. Herein, it is demonstrated that temperature-driven chirality switching could also be realized by mixing two miscible organic solvents, in each of which chirality inversion is not accomplishable. Additionally, solvent mixing drastically varied the inversion temperature of the MUJs, for example, from far below zero to room temperature. Moreover, the temperature-driven S /R to R /S chirality switching direction could be reversed by the solvent mixing and it was critically controlled by the mixing ratios of the two solvents. These observations allowed precise manipulation of the chirality switching behavior of the MUJs. Such a chirality switching was ascribed to the influences of solvent and temperature on the in-out equilibrium of the side rings, which is delicately controlled by several processes, including the solvation/desolvation and the inclusion/exclusion of the side rings and solvent molecules. Crucially, the solvent mixing introduced new supramolecular processes, in particular the desolvation of solvent molecules from the mixed solvent system and the solvation of the side ring by the mixed solvent, which significantly disturbed the original in-out equilibrium of MUJs and drastically switched the entropy and enthalpy changes of conformational interconversion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201902676 | DOI Listing |
ACS Photonics
January 2025
Foundation of Research and Technology Hellas, Institute of Electronic Structure and Laser, Heraklion 71110, Greece.
We demonstrate a simple, low-cost, and ultracompact chiral resonant metasurface design, which, by strong local coupling to a quantum gain medium (quantum emitters), allows to implement an ultrathin metasurface laser, capable of generating tunable circularly polarized coherent lasing output. According to our detailed numerical investigations, the lasing emission can be transformed from linear to circular and switch from right- to left-handed circularly polarized (CP) not only by altering the metasurface chiral response but also by changing the polarization of a linearly polarized pump wave, thus enabling dynamic lasing-polarization control. Given the increasing interest for CP laser emission, our chiral metasurface laser design proves to be a versatile yet straightforward strategy to generate a strong and tailored CP emission laser, promising great potential for future applications in both photonics and materials science.
View Article and Find Full Text PDFACS Appl Electron Mater
January 2025
Department of Applied Physics, National Pingtung University, No. 4-18, Minsheng Road, 90044 Pingtung, Taiwan.
This study introduces a simple approach to dynamically control multilevel optical ellipticity in ferrimagnetic GdFeCo alloys by switching the spin orientation through Joule heating induced by electrical current, with the assistance of a low magnetic field of 3.5 mT. It is demonstrated that selecting specific compositions of Gd (FeCo) alloys, with magnetic compensation temperatures near or above room temperature, allows for significant manipulation of the circular dichroism (CD) effect.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
College of Mechanics and Engineering Science, Hohai University, Nanjing, 211100, China.
Driven by the pressing demand for integration and miniaturization within the terahertz (THz) spectrum, this research introduces an innovative approach to construct chiral structures using dichroism as the target function. This initiative aims to tackle the prevalent issues of single-functionality, narrow application scope, and intricate design in conventional metasurfaces. The proposed multifunctional tunable metasurface employs a graphene-metal hybrid structure to address the critical constraints found in existing designs.
View Article and Find Full Text PDFChemistry
January 2025
Beijing Normal University, College of Chemistry, Xiejiekou NO.19, 100875, Beijing, CHINA.
Optically pure monosubstituted [n]paracyclophanes are promising candidates for material synthesis, asymmetric catalysis, and drug discovery. Thus far, only a few catalytic asymmetric synthesis processes have been reported for assessing these stained atropisomers. In this study, we describe a highly enantioselective synthesis of monosubstituted [n]paracyclophanes by combining desymmetrization and kinetic resolution.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Xiangtan University, College of Chemistry, CHINA.
Efficient circularly polarized luminescence (CPL) optical waveguides have significant potential for advancing photonic and optoelectronic devices. However, the development of CPL optical waveguides materials (OWMs) with low optical loss coefficient remains a considerable challenge. To overcome this, we design and synthesize CPL OWMs based on room-temperature phosphorescent liquid crystalline polymers (LCPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!