Electrocatalytic degradation of the herbicide metamitron using lead dioxide anode: influencing parameters, intermediates, and reaction pathways.

Environ Sci Pollut Res Int

School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China.

Published: September 2019

AI Article Synopsis

Article Abstract

In the present study, the electrocatalytic degradation of triazine herbicide metamitron using Ti/PbO-CeO composite anode was studied in detail. The effects of the current density, initial metamitron concentration, supporting electrolyte concentration, and initial pH value were investigated and optimized. The results revealed that an electrocatalytic approach possessed a high capability of metamitron removal in aqueous solution. After 120 min, the removal ratio of metamitron could reach 99.0% in 0.2 mol L NaSO solution containing 45 mg L metamitron with the current density at 90 mA cm and pH value at 5.0. The reaction followed the pseudo-first-order kinetics model. HPLC and HPLC-MS were employed to analyze the degradation by-products in the metamitron oxidization process, and the degradation pathway was also proposed, which was divided into two sub-routes according to the different initial attacking positions on metamitron by hydroxyl radicals. Therefore, the electrocatalytic approach was considered as a very promising technology in practical application for herbicide wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-019-05868-7DOI Listing

Publication Analysis

Top Keywords

electrocatalytic degradation
8
metamitron
8
herbicide metamitron
8
current density
8
electrocatalytic approach
8
electrocatalytic
4
degradation herbicide
4
metamitron lead
4
lead dioxide
4
dioxide anode
4

Similar Publications

Titania (TiO) is one of promising photo catalysts for its high ability to resistant photo corrosion and environmental friendliness, but its photocatalytic activity is too low to be used in industry. To find an approach to solve this problem, graphene oxide (GO), tungsten trioxide (WO) and TiO composite with hollow mesoporous structure was prepared by a two-step spray drying method. The composite was used as raw material to constitute a membrane onto ITO glass to form a membrane photo-anode.

View Article and Find Full Text PDF

Alkali metal doping is a new and promising approach to enhance the photo/electrocatalytic activity of NiS-based catalyst systems. This work investigates the impact of sodium on the structural, electronic, and catalytic properties of NiS. Comprehensive characterization techniques demonstrate that Na-doping causes significant changes in the NiS lattice and surface chemistry translating into a larger bandgap than NiS.

View Article and Find Full Text PDF

The electrocatalytic conversion of oxygen to hydrogen peroxide offers a promising pathway for sustainable energy production. However, the development of catalysts that are highly active, stable, and cost-effective for hydrogen peroxide synthesis remains a significant challenge. In this study, a novel polyacid-based metal-organic coordination compound (Cu-PW) was synthesized using a hydrothermal approach.

View Article and Find Full Text PDF

Unveiling the Contribution of Hydrogen Radicals to Per- and Polyfluoroalkyl Substances (PFASs) Defluorination: Applicability and Degradation Mechanisms.

Environ Sci Technol

January 2025

Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.

At present, the defluorination of per- and polyfluoroalkyl substances (PFASs), including perfluoroether compounds as substitutes of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate, is limited by the effective active species produced during the oxidation-reduction process. The contribution of the hydrogen radical (•H) as a companion active substance in the photoreduction and electrocatalytic degradation of PFASs has been neglected. Herein, we demonstrate that perfluorocarboxylic acids and perfluoroether compounds such as PFOA and hexafluoropropylene oxide dimer acid (GenX) underwent near-complete photodegradation and effective defluorination by continuously generating •H through perfluoroalkyl radical activation of water under UV irradiation without any reagents and catalysts.

View Article and Find Full Text PDF

In this study, graphitic carbon nitride (CN) and tungsten trioxide (WO) were successfully incorporated into bromine (Br)-doped graphitic carbon nitride (BCN) using an in-situ hydrothermal method. The photocatalytic efficiency of the resulting WO/Br-doped CN (WBCN) composites for the removal of tetracycline (TC) antibiotics under sunlight irradiation was evaluated. The mass ratio of WO to Br-doped CN (BCN) significantly influenced TC adsorption and photocatalytic degradation, with an optimal ratio of 9:1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!