Simple 3D printed stainless steel microreactors for online mass spectrometric analysis.

Heliyon

Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E), FI-00014, University of Helsinki, Finland.

Published: July 2019

A simple flow chemistry microreactor with an electrospray ionization tip for real time mass spectrometric reaction monitoring is introduced. The microreactor was fabricated by a laser-based additive manufacturing technique from acid-resistant stainless steel 316L. The functionality of the microreactor was investigated by using an inverse electron demand Diels-Alder and subsequent retro Diels-Alder reaction for testing. Challenges and problems encountered are discussed and improvements proposed. Adsorption of reagents to the rough stainless steel channel walls, short length of the reaction channel, and making a proper ESI tip present challenges, but the microreactor is potentially useful as a disposable device.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6609794PMC
http://dx.doi.org/10.1016/j.heliyon.2019.e02002DOI Listing

Publication Analysis

Top Keywords

stainless steel
12
mass spectrometric
8
simple printed
4
printed stainless
4
steel microreactors
4
microreactors online
4
online mass
4
spectrometric analysis
4
analysis simple
4
simple flow
4

Similar Publications

Synthesis and characterizing of MgO, 58S bioactive glass and N carboxymethyl chitosan and coating composites of them on SS316L.

Int J Biol Macromol

December 2024

Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares Universirty, Tehran, Iran.

One of the most effective ways to solve the problems caused by the presence of steel implants in the body is to apply a coating to them. This study aims to develop and optimize composite coatings of magnesium oxide (MgO), 58S bioactive glass (BG), and N-carboxymethyl chitosan (N-CMC) on stainless steel (SS316L) substrates using the electrophoretic deposition (EPD) method. The synthesized materials were characterized using FTIR, XRD, and SEM to confirm their structure and morphology prior to coating.

View Article and Find Full Text PDF

Use of dielectric-barrier discharge (DBD) cold plasma for control of bread spoilage fungi.

Int J Food Microbiol

December 2024

Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas, São Paulo, Brazil. Electronic address:

Bread is a greatly consumed bakery product worldwide. Unfortunately, it is an optimal substrate for fungal contamination and deterioration (aw > 0.95), commonly caused by the genera Penicillium, Paecilomyces, and Aspergillus, resulting in significant economic losses.

View Article and Find Full Text PDF

(AlCrMoNiTi)N high-entropy alloy nitride (HEAN) films were synthesized at various bias voltages using the co-filter cathodic vacuum arc (co-FCVA) deposition technique. This study systematically investigates the effect of bias voltage on the microstructure and performance of HEAN films. The results indicate that an increase in bias voltage enhances the energy of ions while concomitantly reducing the deposition rate.

View Article and Find Full Text PDF

Purpose: To evaluate the effectiveness and safety of an upgraded integrated vacuum suction catheter in semi-rigid ureteroscopic laser lithotripsy (VC-URSL) compared to traditional methods for treating impacted upper ureteral stones.

Patients And Methods: This prospective, randomized controlled trial was conducted from September 2022 to March 2024 at a single center, enrolling 95 patients aged 18 to 70 years with a single radiopaque impacted upper ureteral stone. Participants were randomized into two groups: the VC-URSL group used an integrated vacuum suction catheter featuring a stainless steel stabilizing tube and a narrowed distal end to prevent obstruction, while the T-URSL group underwent standard ureteroscopic lithotripsy without vacuum assistance.

View Article and Find Full Text PDF

The aim of the study is to assess the impact of mechanical surface treatments on the shear bond strength (SBS) of orthodontic brackets bonded to three-dimensional (3D) printed and milled CAD/CAM provisional materials. Sixty cylindrical samples were fabricated for each provisional material. Samples were treated with one of the following surface treatments: aluminum oxide airborne particle abrasion, diamond bur rotary instrument roughening, and phosphoric acid etching (control).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!