Drug-resistant tuberculosis (TB), one of the leading causes of death worldwide, arises mainly from spontaneous mutations in the genome of Mycobacterium tuberculosis. There is an urgent need to understand the mechanisms by which the mutations confer resistance in order to identify new drug targets and to design new drugs. Previous studies have reported numerous mutations that confer resistance to anti-TB drugs, but there has been little systematic analysis to understand their genetic background and the potential impacts on the drug target stability and/or interactions. Here, we report the analysis of whole-genome sequence data for 98 clinical M. tuberculosis isolates from a city in southern India. The collection was screened for phenotypic resistance and sequenced to mine the genetic mutations conferring resistance to isoniazid and rifampicin. The most frequent mutation among isoniazid and rifampicin isolates was S315T in katG and S450L in rpoB respectively. The impacts of mutations on protein stability, protein-protein interactions and protein-ligand interactions were analysed using both statistical and machine-learning approaches. Drug-resistant mutations were predicted not only to target active sites in an orthosteric manner, but also to act through allosteric mechanisms arising from distant sites, sometimes at the protein-protein interface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635374 | PMC |
http://dx.doi.org/10.1038/s41598-019-46756-x | DOI Listing |
Front Pharmacol
January 2025
State Key Laboratory of Respiratory Disease, Joint School of Life Sciences, Guangzhou Chest Hospital, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.
The efficacy of many compounds against is often limited when administered via conventional oral or injection routes due to suboptimal pharmacokinetic characteristics. Inhalation-based delivery methods have been investigated to achieve high local therapeutic doses in the lungs. However, previous models, typically employing wild-type strains, were intricate, time-consuming, labor-intensive, and with poor reproducibility.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Mycobacteriology Research Center, Institute of Health, Jimma University, Jimma, Oromia, Ethiopia.
Background: Early and accurate diagnosis of drug resistance, including resistance to second-line anti-tuberculosis (TB) drugs, is crucial for the effective control and management of pre-extensively drug-resistant TB (pre-XDR-TB) and extensively drug-resistant TB (XDR-TB). The Xpert MTB/XDR assay is the WHO recommended method for detecting resistance to isoniazid and second-line anti-TB drugs when rifampicin resistance is detected. Currently, the Xpert MTB/XDR assay is not yet implemented in Ethiopia, thus the MTBDRsl assay continues to be used.
View Article and Find Full Text PDFAntimicrob Agents Chemother
January 2025
Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA.
A major challenge in tuberculosis (TB) therapeutics is that antibiotic exposure leads to changes in the physiology of (), which may enable the pathogen to withstand treatment. While antibiotic-treated has been evaluated in experiments it is unclear if and how long-term treatment with diverse antibiotics with varying treatment-shortening activity (sterilizing activity) affects physiologic processes differently. Here, we used SEARCH-TB, a pathogen-targeted RNA-sequencing platform, to characterize the transcriptome in the BALB/c high-dose aerosol infection mouse model following 4 weeks of treatment with three sterilizing and three non-sterilizing antibiotics.
View Article and Find Full Text PDFAntimicrob Agents Chemother
January 2025
Division of Infectious Diseases, Department of Medicine, University of Texas at Tyler School of Medicine, Tyler, Texas, USA.
The impact of heteroresistance on tuberculosis (TB) treatment outcomes is unclear, as is the role of different rifampin and isoniazid exposures on developing resistance mutations. Hollow fiber system model of TB (HFS-TB) units were inoculated with drug-susceptible () and treated with isoniazid and rifampin exposure identified in a clinical trial as leading to treatment failure and acquired drug resistance. Systems were sampled for drug concentration measurements, estimation of total and drug-resistant , and small molecule overlapping reads (SMOR) analysis for the detection of heteroresistance.
View Article and Find Full Text PDFAn Bras Dermatol
January 2025
Dermatology Service, Universidade do Estado do Pará, Belém, PA, Brazil.
Background: Cutaneous tuberculosis is a rare form of the disease that defies diagnosis due to the diversity of clinical presentations. This study was based on the reality of a dermatology referral center in the Brazilian Amazon region to detail several characteristics of this disease.
Objective: To describe a series of cases of cutaneous tuberculosis treated at a dermatology service in the Brazilian Amazon region, addressing epidemiological aspects, clinical forms, diagnostic methods, treatment, and outcomes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!