Increased recycling of nutrient-rich organic waste to meet crop nutrient needs is an essential component of a more sustainable food system. However, agricultural specialization continues to pose a significant challenge to balancing crop nutrient needs and the nutrient supply from animal manure and human excreta locally. For Sweden, this study found that recycling all excreta (in 2007) could meet up to 75% of crop nitrogen and 81% of phosphorus needs, but that this would exceed crop potassium needs by 51%. Recycling excreta within municipalities could meet 63% of crop P nutrient needs, but large regional differences and imbalances need to be corrected to avoid over or under fertilizing. Over 50% of the total nitrogen and phosphorus in excreta is contained in just 40% of municipalities, and those have a surplus of excreta nutrients compared to crop needs. Reallocation of surpluses (nationally optimized for phosphorus) towards deficit municipalities, would cost 192 million USD (for 24 079 km of truck travel). This is 3.7 times more than the total NPK fertilizer value being transported. These results indicate that Sweden could reduce its dependence on synthetic fertilizers through investments in excreta recycling, but this would likely require valuing also other recycling benefits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635506 | PMC |
http://dx.doi.org/10.1038/s41598-019-46706-7 | DOI Listing |
Front Plant Sci
January 2025
Department of Plant and Soil Sciences, Oklahoma State University, Oklahoma, OK, United States.
Introduction: Response to fertilization with biochar in contaminated soils for forage crops lacks comprehensive understanding. This study delves into the role of biochar in enhancing soil pH and phosphorus (P) and potassium (K) availability for ryegrass () in clay and silt loam metal-contaminated soils.
Methods: Two pot experiments were conducted using switchgrass-derived biochar (SGB) and poultry litter-derived biochar (PLB) with varying biochar application rates: one without plants and the other with ryegrass.
Front Plant Sci
January 2025
Department of Biology, School of Philosophy, Science and Literature (FFCLRP), University of São Paulo, Ribeirão Preto, Brazil.
This study aimed to compare the conventional soybean ( L.) cultivation method with integrated systems in an Latossolo Vermelho Acriférrico típico and how these systems affect soil cover biomass production, initial nutrient concentration in plant residues, soil respiration and microclimate, as well as soybean growth, physiology and productivity. A comparative analysis of microclimate and soil respiration, plant physiology, and growth was conducted between a conventional soybean monoculture (soybean grown without plant residues on the soil from the previous crop) and soybean grown in soil containing maize residues.
View Article and Find Full Text PDFFront Microbiol
January 2025
College of Agriculture, Shandong Agricultural University/National Key Laboratory of Wheat Improvement, Taian, China.
Continuous monocropping of peanuts (.) often results in yield decline and soil degradation. The combination of green manure (GM) with tillage practices has been proposed as a sustainable strategy to maintain high crop productivity and improve soil quality.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States.
Saltwater intrusion (SWI) is a concerning issue impacting agricultural production and soil C cycling, which can have a wider effect on the climate. Complex soil processes driving soil C cycling following saltwater intrusion have not yet been fully quantified. Agricultural fields with varying degrees of saltwater intrusion, unaffected control, and native tidal marsh were studied to understand the impacts of saltwater intrusion on soil properties and soil carbon dynamics.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Electroceramics and Electrical Engineering, Malek Ashtar University of Technology, Iran.
As a primary abiotic constraint for bean cultivation in semi-arid regions, drought stress significantly impacts both the yield and quality of beans. Foliar application of nanofertilizer has been shown to effectively improve crop yield and nutritional quality while mitigating environmental pollution associated with fertilizer runoff. In this study, we conducted a semi-field study using magnetite nanoparticles (FeONPs) to evaluate its effects on the growth, yield, nutrient quality, photosynthetic parameters, and physiological traits in kidney bean (Phaseolus vulgaris L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!