Turtle shells comprising of cortical and trabecular bones exhibit intriguing mechanical properties. In this work, compression tests were performed using specimens made from the carapace of Kinixys erosa turtle. A combination of imaging techniques and mechanical testing were employed to examine the responses of hierarchical microstructures of turtle shell under compression. Finite element models produced from microCT-scanned microstructures and analytical foam structure models were then used to elucidate local responses of trabecular bones deformed under compression. The results reveal the contributions from micro-strut bending and stress concentrations to the fractural mechanisms of trabecular bone structures. The porous structures of turtle shells could be an excellent prototype for the bioinspired design of deformation-resistant structures. STATEMENT OF SIGNIFICANCE: In this study, a combination of analytical, computational models and experiments is used to study the underlying mechanisms that contribute to the compressive deformation of a Kinixys erosa turtle shell between the nano-, micro- and macro-scales. The proposed work shows that the turtle shell structures can be analyzed as sandwich structures that have the capacity to concentrate deformation and stresses within the trabecular bones, which enables significant energy absorption during compressive deformation. Then, the trends in the deformation characteristics and the strengths of the trabecular bone segments are well predicted by the four-strut model, which captures the effects of variations in strut length, thickness and orientation that are related to microstructural uncertainties of the turtle shells. The above results also suggest that the model may be used to guide the bioinspired design of sandwich porous structures that mimic the properties of the cortical and trabecular bone segments of turtle shells under a range of loading conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2019.07.023 | DOI Listing |
Animals (Basel)
November 2024
Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
The Chinese soft-shelled turtle () is an economically important species in aquaculture, and its growth pattern is characterized by significant sexual dimorphism. However, the underlying molecular mechanisms of this phenomenon have mostly been investigated in the gonadal tissues of , and there are no articles on sex differentiation from the brain of . Here, we analyzed transcriptomes of the brains of adult male and female using high-throughput Illumina sequencing technology, establishing a set of differential genes and differential transcription factors.
View Article and Find Full Text PDFSpace Sci Rev
December 2024
NASA Goddard Space Flight Center, Greenbelt, MD USA.
The Europa Imaging System (EIS) consists of a Narrow-Angle Camera (NAC) and a Wide-Angle Camera (WAC) that are designed to work together to address high-priority science objectives regarding Europa's geology, composition, and the nature of its ice shell. EIS accommodates variable geometry and illumination during rapid, low-altitude flybys with both framing and pushbroom imaging capability using rapid-readout, 8-megapixel (4k × 2k) detectors. Color observations are acquired using pushbroom imaging with up to six broadband filters.
View Article and Find Full Text PDFTierarztl Prax Ausg K Kleintiere Heimtiere
December 2024
Medizinische Kleintierklinik, Ludwig-Maximilians-Universität München.
Cell Stress Chaperones
December 2024
Unit for Reproductive Medicine - Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany. Electronic address:
Int J Mol Sci
November 2024
Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang 330031, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!