Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A thorough understanding of epigenetics regulatory mechanisms of premature ovarian failure (POF) is still lacking. Here, we found that cyclophosphamide induced significantly decrease in α-Klotho (Kl) expression in mouse ovarian granulosa cells (mOGCs), suggesting that cyclophosphamide inhibited Kl expression. Cyclophosphamide also significantly accelerated ageing and led to a decline in the pregnancy rate of C. elegans. We subsequently noted that the pathological condition exhibited by Kl mice was similar to that observed in cyclophosphamide-induced POF mice. Furthermore, the mOGCs in both types of mice showed significant signs of oxidative stress damage, including decreased SOD and ATP, increased ROS levels. Detailed analyses revealed that the decreased Kl expression led to the reduced expression of autophagy-related proteins in mOGCs, which resulted in decreased autophagy activity. Finally, we found that cyclophosphamide attenuated the autophagy function of mOGCs via upregulating microRNA-15b expression, which silenced the endogenous Kl mRNA expression and stimulated the activity of the downstream TGFβ1/Smad pathway. Therefore, we demonstrated that Kl was one of the key inhibitory factors in the development of POF. It elucidated the underlying epigenetic regulatory mechanism, whereby cyclophosphamide-dependent microRNA-15b inhibited Kl expression, leading to the reduced ability of mOGCs to induce autophagy and ROS scavenging, ultimately causing POF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2019.07.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!