Conformational behavior of a semiflexible dipolar chain with a variable relative size of charged groups via molecular dynamics simulations.

Soft Matter

Faculty of Physics, Lomonosov Moscow State University, Leninskie gory, 1-2, 119991, Moscow, Russia. and A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St., 28, 119991, Moscow, Russia.

Published: August 2019

The conformational behavior of an isolated semiflexible dipolar chain has been studied by molecular dynamics simulations. The dipolar chain was modeled as a backbone chain of charged beads, each containing an oppositely charged unit connected to it by a rigid spring. The main focus was on the effect of the backbone chain rigidity and the size of the charged groups on the morphology of the collapsed states of the chain formed in low-polar media where the electrostatic interactions are essential. It has been found that the stable globular conformations of the long chain of N = 256 backbone beads are a toroid and an elliptical globule. The macroscopic parameters (such as the radius of gyration and shape factors) as well as the local characteristics of these conformations (radial density distributions of ions, orientational correlations of chain segments, dipoles etc.) are studied depending on the chain stiffness. The regions of stability of a torus and an elliptical globule are found for the dipolar chains with variable dipole length and stiffness, which depend on the strength of electrostatic interactions. It has been shown that a size asymmetry of oppositely charged beads destabilizes globular states favoring elongated chain conformations. A coexistence of various metastable states was demonstrated for shorter chains of N = 128, 64, and 32.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9sm00909dDOI Listing

Publication Analysis

Top Keywords

dipolar chain
12
chain
10
conformational behavior
8
semiflexible dipolar
8
size charged
8
charged groups
8
molecular dynamics
8
dynamics simulations
8
backbone chain
8
charged beads
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!