The hydrogen-atom adduct with anthracene, 9-dihydroanthracenyl radical (CH), and its deuterated analogue have been identified by laser spectroscopy coupled to time-of-flight mass spectrometry, supported by time-dependent density functional theory calculations. The electronic spectrum of 9-dihydroanthracenyl radical exhibits an origin band at 19115 cm and its ionization energy was determined to be 6.346(1) eV. The spectra reveal a low-frequency vibrational progression corresponding to a mode described by a butterfly inversion. In the deuterated analogue, a zero-point-energy imbalance along this coordinate is found to lead to a doubling of the observed spectral lines in the progression. This is attributed to quantum-induced symmetry breaking as previously observed in isotopologues of CH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.9b04561 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!