Photodynamic therapy has been efficiently applied for cancer therapy. Here, we have fabricated the folic acid (FA)- and pheophorbide A (PA)-conjugated FA/PA@FeO nanoparticle (smart hybrid nanocomposite, SHN) to enhance the photodynamic inactivation (PDI) of specific cancer cells. SHN coated with the PDI agent is designed to have selectivity for the folate receptor (FR) expressed on cancer cells. Structural characteristics and morphology of the fabricated MNPs were studied with X-ray diffraction and scanning electron microscopy. The photophysical properties of SHN were investigated with absorption, emission spectroscopies, and Fourier transform infrared spectroscopy. In addition, the magnetic property of FeO nanoparticle (MNP) can be utilized for the collection of SHNs by an external magnetic field. The photofunctionality was given by the photosensitizer, PA, which generates reactive oxygen species by irradiation of visible light. Generation of singlet oxygen was directly evaluated with time-resolved phosphorescence spectroscopy. Biocompatibility and cellular interaction of SHN were also analyzed by using various cancer cells, such as KB, HeLa, and MCF-7 cells which express different levels of FR on the surface. Cellular adsorption and the PDI effect of SHN on the various cancer cells were correlated well with the surface expression levels of FR, suggesting potential applicability of SHN on specific targeting and PDI of FR-positive cancers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.9b04301 | DOI Listing |
Mol Carcinog
January 2025
Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.
Colorectal cancer (CRC) is among the most common cancer types for both sexes. Tripartite motif 36 (TRIM36) has been reported to be aberrantly expressed in several cancer types, suggesting its involvement in cancer progression. However, the role of TRIM36 in the colorectal carcinogenesis remain unknown.
View Article and Find Full Text PDFChem Biodivers
January 2025
Biruni Universitesi, Molecular Biology and Genetics, Biruni Uni, İstanbul, TURKEY.
Regulation of protein production in response to physiological signals is achieved through precise control of Eukaryotic Elongation Factor 2 (eEF2), whose distinct translocase function is crucial for cell survival. Phosphorylation of eEF2 at its Thr56 (T56) residue inactivates this function in translation. Using genetically modified paralogue of a colon cancer cell line, HCT116 which carries a point mutation at Ser595-to-Alanine in the eEF2 gene we were able to create a constitutively active form of eEF2.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University Tallahassee, FL 32307, The United States.
The tumor immune microenvironment (TIME) plays a critical role in cancer development and response to immunotherapy. Immune checkpoint inhibitors aim to reverse the immunosuppressive effects of the TIME, but their success has been limited. Immunotherapy directed at PD-1/PD-L1 has been widely employed, yielding positive results.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University Taoyuan 33305, Taiwan.
Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated cancer, and immune checkpoint inhibitors (ICIs) have shown efficacy in its treatment. The combination of chemotherapy and ICIs represents a new trend in the standard care for metastatic NPC. In this study, we aim to clarify the immune cell profile and related prognostic factors in the ICI-based treatment of metastatic NPC.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Department of Hematology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences Taiyuan 030013, Shanxi, China.
Objective: To analyze the clinical characteristics and molecular biomarkers of adult T-cell lymphoblastic lymphoma (T-LBL) to identify prognostic factors, and to evaluate the efficacy of different chemotherapy regimens, providing a basis for optimizing treatment strategies for T-LBL.
Methods: A total of 89 Patients aged 18-72 years with T-LBL, confirmed via histopathological examination of lymph nodes, extranodal tissues, or bone marrow, were retrospectively included. Clinical data, treatment details, and mutational profiles were collected.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!