A novel pyranine derivative, EtHPTA-OH, was synthesized via the substitution of the anionic sulfonate groups with neutral diethylsulfonamide groups. The photophysical and photochemical properties of EtHPTA-OH were studied using photoluminescence quenching and transient absorption spectroscopy. The singlet state of EtHPTA-OH was found to be highly photoacidic (pKa* = 8.74 in acetonitrile). A series of aniline and pyridine bases were used to investigate excited-state proton transfer (ESPT) from singlet EtHPTA-OH, and rate constants for singlet quenching via ESPT were determined (kq = 5.18 × 109 to 1.05 × 1010 M-1 s-1). EtHPTA-OH was also found to exhibit a long-lived triplet state which reacts through a triplet-triplet annihilation (TTA) process to reform singlet EtHPTA-OH on timescales of up to 80 μs. Detection of ESPT photoproducts on timescales comparable to that of TTA singlet regeneration provides strong evidence for photoacidic behavior stemming from the regenerated singlet EtHPTA-OH.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cp02929jDOI Listing

Publication Analysis

Top Keywords

singlet ethpta-oh
12
triplet-triplet annihilation
8
pyranine derivative
8
ethpta-oh
7
singlet
6
delayed photoacidity
4
photoacidity produced
4
produced triplet-triplet
4
annihilation neutral
4
neutral pyranine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!