Long non-coding RNA PVT1 interacts with MYC and its downstream molecules to synergistically promote tumorigenesis.

Cell Mol Life Sci

NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.

Published: November 2019

Numerous studies have shown that non-coding RNAs play crucial roles in the development and progression of various tumor cells. Plasmacytoma variant translocation 1 (PVT1) mainly encodes a long non-coding RNA (lncRNA) and is located on chromosome 8q24.21, which constitutes a fragile site for genetic aberrations. PVT1 is well-known for its interaction with its neighbor MYC, which is a qualified oncogene that plays a vital role in tumorigenesis. In the past several decades, increasing attention has been paid to the interaction mechanism between PVT1 and MYC, which will benefit the clinical treatment and prognosis of patients. In this review, we summarize the coamplification of PVT1 and MYC in cancer, the positive feedback mechanism, and the latest promoter competition mechanism of PVT1 and MYC, as well as how PVT1 participates in the downstream signaling pathway of c-Myc by regulating key molecules. We also briefly describe the treatment prospects and research directions of PVT1 and MYC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6803569PMC
http://dx.doi.org/10.1007/s00018-019-03222-1DOI Listing

Publication Analysis

Top Keywords

pvt1 myc
16
long non-coding
8
non-coding rna
8
pvt1
8
mechanism pvt1
8
myc
6
rna pvt1
4
pvt1 interacts
4
interacts myc
4
myc downstream
4

Similar Publications

Pancreatic cancer is an extremely malignant tumor. PVT1 and MYC signaling has been considered as a therapeutic target recently. Nonetheless, the prognostic values and critical regulatory networks of PVT1-MYC duet in pancreatic cancer remain unclear.

View Article and Find Full Text PDF

The Editors of Medical Science Monitor wish to inform you that the above manuscript has been retracted from publication due to concerns with the credibility and originality of the study, the manuscript content, and the Figure images. Reference: Yihua Zhang, Yang Tan, Hao Wang, Minhui Xu, Lunshan Xu. Long Non-Coding RNA Plasmacytoma Variant Translocation 1 (PVT1) Enhances Proliferation, Migration, and Epithelial-Mesenchymal Transition (EMT) of Pituitary Adenoma Cells by Activating ß-Catenin, c-Myc, and Cyclin D1 Expression.

View Article and Find Full Text PDF

Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide because of its high morbidity and the absence of effective therapies. Even though paclitaxel is a powerful anticancer chemotherapy drug, recent studies have indicated its ineffectiveness against GC cells. Long non-coding RNA (lncRNA) PVT1 has a high expression in GC cells and increases the progression of tumors via inducing drug resistance.

View Article and Find Full Text PDF

Cardiac fibrosis is a commonly seen pathophysiological process in various cardiovascular disorders, such as coronary heart disorder, hypertension, and cardiomyopathy. Cardiac fibroblast trans-differentiation into myofibroblasts (MFs) is a key link in myocardial fibrosis. LncRNA PVT1 participates in fibrotic diseases in multiple organs; however, its role and mechanism in cardiac fibrosis remain largely unknown.

View Article and Find Full Text PDF

Background: Acute lymphoblastic leukemia (ALL) is the most common type of blood cancer in children. Aberrant expression of long noncoding RNAs (lncRNAs) may set stages for ALL development. LncRNAs are emerging as a novel diagnostic and prognostic biomarker for ALL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!