Background: Due to the recent appearance of organisms that are resistant to several drugs (multidrug-resistant) like Enterobacteriaceae that produce extended-spectrum β-lactamase (ESBL, concerns have remarkably increased regarding the suitable treatment of infections. The present study was an investigation into ESBL molecular characteristics among clinical isolates of and resulting in urinary tract infections (UTIs) and their pattern of antimicrobial resistance in order to come up with helpful information on the epidemiology of these infections and risk factors accompanied with them.
Methods: In order to conduct the study, 20 and 48 were isolated and retrieved from thalassemia center in Erbil, Iraq during July 2016 and September 2016. The collected strains were analyzed and the profile of their antimicrobial susceptibility was specified. In order to spot β-lactamase genes (i.e. TEM, SHV, and CTX-M), polymerase chain reaction was conducted.
Results: The findings obtained from multiplex PCR assay showed that out of the collected strains of ESBL-producing , had 81% TEM, 16.2% SHV, and 32.4% CTX-M genes. Similarly, 64.7% TEM, 35.2% SHV, and 41.1% CTX-M genes existed in the isolates of . It was found that antibiotic resistance pattern of and isolates to 20 antibiotics varied widely. It was also concluded that the majority of the and isolates were multi-drug resistant (MDR). Moreover, 75% and 87.5% of respectively and isolates showed the MDR phenotypes.
Conclusion: TEM prevalence was high among other types of ESBLs. Over all, the most active antimicrobial agents remained to be the carbapenems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613628 | PMC |
http://dx.doi.org/10.4084/MJHID.2019.041 | DOI Listing |
Future Microbiol
January 2025
Universidad San Francisco de Quito, Colegio de Ciencias Biológicas Ambientales, Instituto de Microbiología, Quito, Ecuador.
Aim: To investigate the nucleotide sequences associated with transposable elements carrying bla allelic variants as potential markers for the transmission of antimicrobial resistance genes between domestic animals, humans and the environment.
Materials & Methods: We conducted whole-genome sequencing and analyzed the nucleotide sequences of most abundant bla allelic variants (bla, bla, and bla) in commensal Escherichia coli ( = 20) from household members in Quito and uropathogenic E. coli (UPEC) ( = 149) isolated from nine clinics in Quito, Ecuador.
Antimicrob Agents Chemother
January 2025
Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Ceftriaxone-resistant Enterobacterales remain a public health threat; contemporary data investigating their molecular epidemiology are limited. Five hundred consecutive ceftriaxone-resistant (MIC ≥ 4 µg/mL) Enterobacterales bloodstream isolates were collected between 2018 and 2022 from three Maryland hospitals. Broth microdilution confirmed antibiotic susceptibilities.
View Article and Find Full Text PDFEnviron Int
January 2025
Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom; Division of Infection and Immunity, Department of Medical Microbiology, Heath Campus, Cardiff University, Cardiff, United Kingdom. Electronic address:
The dissemination of antimicrobial resistant (AMR) bacteria by flies in hospitals is concerning as nosocomial AMR infections pose a significant threat to public health. This threat is compounded in low- and middle-income countries (LMICs) by several factors, including limited resources for sufficient infection prevention and control (IPC) practices and high numbers of flies in tropical climates. In this pilot study, 1,396 flies were collected between August and September 2022 from eight tertiary care hospitals in six cities (Abuja, Enugu, Kaduna, Kano, Lagos and Sokoto) in Nigeria.
View Article and Find Full Text PDFPathogens
January 2025
MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal.
One of the significant challenges facing modern medicine is the rising rate of antibiotic resistance, which impacts public health, animal health, and environmental preservation. Evaluating antibiotic resistance in wildlife and their environments is crucial, as it offers essential insights into the dynamics of resistance patterns and promotes strategies for monitoring, prevention, and intervention. and genera isolates were recovered from fecal samples of wild animals and environmental samples using media without antibiotic supplementation.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina 86057-970, Brazil.
The extensive use of antimicrobials in broiler production is changing the bird microbiota, fostering drug-resistant bacteria, and complicating therapeutic interventions, making the problem of multidrug resistance global. The monitoring of antimicrobial virulence and resistance genes are tools that have come to assist the breeding of these animals, directing possible treatments as already used in human medicine and collecting data to demonstrate possible dissemination of multidrug-resistant strains that may cause damage to industry and public health. This work aimed to monitor broiler farms in southern Brazil, isolating samples of and classifying them according to the profile of resistance to antimicrobials of interest to human and animal health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!