Download full-text PDF

Source
http://dx.doi.org/10.1038/s41375-019-0516-7DOI Listing

Publication Analysis

Top Keywords

humanized cd19-specific
4
cd19-specific chimeric
4
chimeric antigen-receptor
4
antigen-receptor t-cells
4
t-cells adults
4
adults newly
4
newly diagnosed
4
diagnosed b-cell
4
b-cell acute
4
acute lymphoblastic
4

Similar Publications

Immunosuppressant therapy averts rejection of allogeneic FKBP1A-disrupted CAR-T cells.

Mol Ther

October 2024

Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA 02115, USA.

Chimeric antigen receptor (CAR) T cells from allogeneic donors promise "off-the-shelf" availability by overcoming challenges associated with autologous cell manufacturing. However, recipient immunologic rejection of allogeneic CAR-T cells may decrease their in vivo lifespan and limit treatment efficacy. Here, we demonstrate that the immunosuppressants rapamycin and tacrolimus effectively mitigate allorejection of HLA-mismatched CAR-T cells in immunocompetent humanized mice, extending their in vivo persistence to that of syngeneic humanized mouse-derived CAR-T cells.

View Article and Find Full Text PDF

Background: The immunogenicity of the antigen-recognition domains of chimeric antigen receptor (CAR)-T cells leads to immune responses that may compromise the antitumor effects of the adoptively transferred T cells. Herein, we attempt to humanize a CD19-specific VHH (named H85) using in silico techniques and investigate the impact of antigen-recognition domain humanization on CAR expression and density, cytokine secretion, and cytolytic reactivity of CAR-T cells based on the humanized VHH.

Methods: H85 was humanized (named HuH85), and then HuH85 was compared with H85 in terms of conformational structure, physicochemical properties, antigenicity and immunogenicity, solubility, flexibility, stability, and CD19-binding capacity using in silico techniques.

View Article and Find Full Text PDF

To investigate the efficacy and safety of humanized CD19-specific chimeric antigen receptor T cells (hCART19s) in treating children and young adults with relapsed/refractory acute lymphoblastic leukemia (R/R ALL) and to analyze relevant factors affecting its curative effect and prognosis. We conducted a single-center clinical trial involving 31 children and young adult patients with R/R B-ALL who were treated with humanized CD19-specific CAR-T cells (hCART19s) from May 2016 to September 2021. Results showed that 27 (87.

View Article and Find Full Text PDF

CD19-targeted chimeric antigen receptor T (CAR-T) cells using murine single-chain variable fragment (scFv) has shown substantial clinical efficacy in treating relapsed/refractory acute lymphoblastic leukemia (R/R ALL). However, potential immunogenicity of the murine scFv domain may limit the persistence of CAR-T cells. In this study, we treated 52 consecutive subjects with R/R ALL with humanized CD19-specific CAR-T cells (hCART19s).

View Article and Find Full Text PDF

Background: Leukemia represents about 5% of all human cancers. Despite advances in therapeutics, a substantial number of patients succumb to the disease. Several subtypes of leukemia are inherently more resistant to treatment despite intensive chemotherapy or targeted therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!