The enzyme kynurenine aminotransferase (KAT) catalyses the conversion of kynurenine (KYN) to kynurenic acid (KYNA). Although the isozymes KAT1-4 have been identified, KYNA is mainly produced by KAT2 in brain tissues. KNYA is an antagonist of N-methyl-D-aspartate and α-7-nicotinic acetylcholine receptors, and accumulation of KYNA in the brain has been associated with the pathology of schizophrenia. Therefore, KAT2 could be exploited as a therapeutic target for the management of schizophrenia. Although currently available KAT2 inhibitors irreversibly bind to pyridoxal 5'-phosphate (PLP), inhibition via this mechanism may cause adverse side effects because of the presence of other PLP-dependent enzymes. Therefore, we identified novel selective KAT2 inhibitors by screening approximately 13,000 molecules. Among these, glycyrrhizic acid (GL) and its analogues, glycyrrhetinic acid (GA) and carbenoxolone (CBX), were identified as KAT2 inhibitors. These compounds were highly selective for KAT2 and competed with its substrate KYN, but had no effects on the other 3 KAT isozymes. Furthermore, we demonstrated that in complex structures that were predicted in docking calculations, GL, GA and CBX were located on the same surface as the aromatic ring of KYN. These results indicate that GL and its analogues are highly selective and competitive inhibitors of KAT2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629613 | PMC |
http://dx.doi.org/10.1038/s41598-019-46666-y | DOI Listing |
Toxicol Appl Pharmacol
February 2023
Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland. Electronic address:
Dysfunction of the central nervous system are accompanied by changes in tryptophan metabolism, with the kynurenine pathway (KP) being the main route of its catabolism. Recently, KP metabolites, which are collectively called kynurenines, have become an area of intense research due to their ability to directly and indirectly affect a variety of classic neurotransmitter systems. However, the significance of KP in neuropathic pain is still poorly understood.
View Article and Find Full Text PDFBehav Brain Res
May 2021
Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan.
Tryptophan (TRP) is metabolized via the kynurenine (KYN) pathway, which is related to the pathogenesis of major depressive disorder (MDD). Kynurenine 3-monooxygenase (KMO) is a pivotal enzyme in the metabolism of KYN to 3-hydroxykynurenine. In rodents, KMO deficiency induces a depression-like behavior and increases the levels of kynurenic acid (KA), a KYN metabolite formed by kynurenine aminotransferases (KATs).
View Article and Find Full Text PDFBioorg Med Chem Lett
April 2020
Orion Pharma, Tengströminkatu 8, 20380 Turku, Finland.
Human kynurenine aminotransferase 2 (KAT2) inhibitors could be potentially used to treat the cognitive deficits associated with bipolar disease and schizophrenia. Although, there has been active drug research activity by several industrial and academic groups in developing KAT2 inhibitors over the years, no such compound has proceeded to the clinics. Here, we report two different chemical series of reversible KAT2 inhibitors with sub-micromolar activities.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2020
Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, 48109, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States. Electronic address:
Metabolic programs are rewired in cancer cells to support survival and tumor growth. Among these, recent studies have demonstrated that glutamate-oxaloacetate transaminase 1 (GOT1) plays key roles in maintaining redox homeostasis and proliferation of pancreatic ductal adenocarcinomas (PDA). This suggests that small molecule inhibitors of GOT1 could have utility for the treatment of PDA.
View Article and Find Full Text PDFSci Rep
July 2019
Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan.
The enzyme kynurenine aminotransferase (KAT) catalyses the conversion of kynurenine (KYN) to kynurenic acid (KYNA). Although the isozymes KAT1-4 have been identified, KYNA is mainly produced by KAT2 in brain tissues. KNYA is an antagonist of N-methyl-D-aspartate and α-7-nicotinic acetylcholine receptors, and accumulation of KYNA in the brain has been associated with the pathology of schizophrenia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!