A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting Antigenicity of Influenza A Viruses Using biophysical ideas. | LitMetric

Antigenic variations of influenza A viruses are induced by genomic mutation in their trans-membrane protein HA1, eliciting viral escape from neutralization by antibodies generated in prior infections or vaccinations. Prediction of antigenic relationships among influenza viruses is useful for designing (or updating the existing) influenza vaccines, provides important insights into the evolutionary mechanisms underpinning viral antigenic variations, and helps to understand viral epidemiology. In this study, we present a simple and physically interpretable model that can predict antigenic relationships among influenza A viruses, based on biophysical ideas, using both genomic amino acid sequences and experimental antigenic data. We demonstrate the applicability of the model using a benchmark dataset of four subtypes of influenza A (H1N1, H3N2, H5N1, and H9N2) viruses and report on its performance profiles. Additionally, analysis of the model's parameters confirms several observations that are consistent with the findings of other previous studies, for which we provide plausible explanations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629677PMC
http://dx.doi.org/10.1038/s41598-019-46740-5DOI Listing

Publication Analysis

Top Keywords

influenza viruses
16
biophysical ideas
8
antigenic variations
8
antigenic relationships
8
relationships influenza
8
influenza
6
viruses
5
antigenic
5
predicting antigenicity
4
antigenicity influenza
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!