Reconstructing the functions of living cells using nonnatural components is one of the great challenges of natural sciences. Compartmentalization, encapsulation, and surface decoration of globular assemblies, known as vesicles, represent key early steps in the reconstitution of synthetic cells. Here we report that vesicles self-assembled from amphiphilic Janus dendrimers, called dendrimersomes, encapsulate high concentrations of hydrophobic components and do so more efficiently than commercially available stealth liposomes assembled from phospholipid components. Multilayer onion-like dendrimersomes demonstrate a particularly high capacity for loading low-molecular weight compounds and even folded proteins. Coassembly of amphiphilic Janus dendrimers with metal-chelating ligands conjugated to amphiphilic Janus dendrimers generates dendrimersomes that selectively display folded proteins on their periphery in an oriented manner. A modular strategy for tethering nucleic acids to the surface of dendrimersomes is also demonstrated. These findings augment the functional capabilities of dendrimersomes to serve as versatile biological membrane mimics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681758PMC
http://dx.doi.org/10.1073/pnas.1904868116DOI Listing

Publication Analysis

Top Keywords

amphiphilic janus
12
janus dendrimers
12
hydrophobic components
8
nucleic acids
8
folded proteins
8
dendrimersomes
6
encapsulation hydrophobic
4
components
4
components dendrimersomes
4
dendrimersomes decoration
4

Similar Publications

This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization (SGACP). This new SGACP paradigm allows for routine polymerization of common monomers and organic materials into precise monodispersed, dendritic macromolecules (i.

View Article and Find Full Text PDF

Four-component lipid nanoparticles (LNPs) and viral vectors are key for mRNA vaccine and therapeutics delivery. LNPs contain ionizable lipids, phospholipids, cholesterol, and polyethylene glycol (PEG)-conjugated lipids and deliver mRNA for COVID-19 vaccines to liver when injected intravenously or intramuscularly. In 2021, we elaborated one-component ionizable amphiphilic Janus dendrimers (IAJDs) accessing targeted delivery of mRNA.

View Article and Find Full Text PDF

Molecular interactions driving the complexation of rose bengal by triazine-carbosilane dendrons.

Nanoscale

December 2024

Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.

Amphiphilic dendrons or Janus dendrimers self-assembling into nanoscale vesicles offer promising avenues for drug delivery. Triazine-carbosilane dendrons have shown great potential for the intracellular delivery of rose bengal, additionally enhancing its phototoxic activity through non-covalent interactions. Thus, understanding the complexation dynamics between dendrons and photosensitizers is crucial for the development of efficient drug carriers.

View Article and Find Full Text PDF

Multifunctional "Add-On" Module Enabled NIR-II Imaging-Guided Synergistic Photothermal and Chemotherapy of Drug-Resistant Lung Cancer.

ACS Appl Mater Interfaces

December 2024

Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.

Imaging-guided chemo-photothermal combination therapy (chemo-PTT) is recognized for its synergistic therapeutic effects, reduced side effects, and minimal drug resistance, while the development of such theranostics has been hampered by poor imaging and therapy performance and tedious formulation. Herein, we introduce an all-in-one "add-on" module () for the convenient construction of doxorubicin (DOX)-loaded nanoparticles (DOX@BBT) and efficient second near-infrared (NIR-II) fluorescence imaging (FLI)-guided synergistic chemo-PTT of drug-resistant lung cancer. The delicate Janus amphiphilic structure of enables multifunctionality, including NIR-II FLI, aggregation-induced emission (AIE) characteristics, moderate photothermal conversion efficiency (PCE), excellent photostability, and polyethylene glycolation (PEGylation), which could improve the NIR-II FLI and PTT performance, relieve the complexity in theranostics, and enable high reproducibility of the multifunctional theranostics.

View Article and Find Full Text PDF

Amphiphilic Janus Nanoparticles for Effective Treatment of Bacterial Pneumonia by Attenuating Inflammation and Targeted Bactericidal Capability.

Int J Nanomedicine

November 2024

School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, Yantai, Shandong, People's Republic of China.

Introduction: -induced pneumonia is marked by considerable infiltration of inflammatory cells and biofilm formation, which causes acute and transient lung inflammation and infection. Nevertheless, the discovery of alternative preventative and therapeutic methods is essential due to the high mortality rates in clinical settings and the resistance of infection to multiple medications.

Purpose: In this research, we constructed amphiphilic Janus nanoparticles (JNPs, denoted as SSK1@PDA/CaP@CIP), loaded with hydrophobic SSK1, a β-galactosidase (β-gal)-activated prodrug for reducing macrophages, and hydrophilic ciprofloxacin (CIP), a classic antibiotic for treating infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!