A defining feature of embryonic stem cells (ESCs) is the ability to differentiate into all three germ layers. Pluripotency is maintained in part by a unique transcription network that maintains expression of pluripotency-specific transcription factors and represses developmental genes. While the mechanisms that establish this transcription network are well studied, little is known of the posttranscriptional surveillance pathways that degrade differentiation-related RNAs. We report that the surveillance pathway mediated by the RNA exosome nuclease complex represses ESC differentiation. Depletion of the exosome expedites differentiation of human ESCs into all three germ layers. LINE-1 retrotransposons and specific miRNAs, lncRNAs, and mRNAs that encode developmental regulators or affect their expression are all bound by the exosome and increase in level upon exosome depletion. The exosome restrains differentiation in part by degrading transcripts encoding FOXH1, a transcription factor crucial for mesendoderm formation. Our studies establish the exosome as a regulator of human ESC differentiation and reveal the importance of RNA decay in maintaining pluripotency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6683745 | PMC |
http://dx.doi.org/10.1083/jcb.201811148 | DOI Listing |
Curr Issues Mol Biol
November 2024
Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.
Hepatocellular carcinoma (HCC) is the most common form of liver cancer in humans, with an increasing incidence worldwide. The current study aimed to explore the molecular mechanisms that inhibit the proliferation of HepG2 cells, a hepatoblastoma-derived cell line. MSC-derived exosomes (UC-MSCs) were prepared with a median particle size (N50) of 135.
View Article and Find Full Text PDFBiol Psychiatry Glob Open Sci
January 2025
Department of Psychiatry, New York University Grossman School of Medicine, New York, New York.
Background: An excess of exosomes, nanovesicles released from all cells and key regulators of brain plasticity, is an emerging therapeutic target for stress-related mental illnesses. The effects of chronic stress on exosome levels are unknown; even less is known about molecular drivers of exosome levels in the stress response.
Methods: We used our state-of-the-art protocol with 2 complementary strategies to isolate neuronal exosomes from plasma, ventral dentate gyrus, basolateral amygdala, and olfactory bulbs of male mice to determine the effects of chronic restraint stress (CRS) on exosome levels.
Cell Mol Biol Lett
December 2024
Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China.
Gastric cancer (GC) represents a prevalent malignancy globally, often diagnosed at advanced stages owing to subtle early symptoms, resulting in a poor prognosis. Exosomes are extracellular nano-sized vesicles and are secreted by various cells. Mounting evidence indicates that exosomes contain a wide range of molecules, such as DNA, RNA, lipids, and proteins, and play crucial roles in multiple cancers including GC.
View Article and Find Full Text PDFExp Cell Res
December 2024
Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC, 3052, Australia; University of Melbourne Department of Obstetrics and Gynaecology and Newborn Health, Royal Women's Hospital, Parkville, VIC, 3052, Australia. Electronic address:
Increasing evidence shows extracellular vesicles (EVs) are primarily responsible for the beneficial effects of cell-based therapies. EVs derived from mesenchymal stromal cells (MSCs) show promise as a source of EVs for cell-free therapies. The human placental fetal-maternal interface is a rich and abundant source of MSCs from which EVs can be isolated.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan. Electronic address:
WD repeat domain 74 (WDR74) is a nucleolar protein involved in the early stages of pre-60S maturation in the ribosome biogenesis pathway. In later stages, WDR74 interacts with MTR4, an RNA helicase that functions with the exosome nuclease complex, and is dissociated upon ATP hydrolysis by the chaperone-like nuclear VCP-like 2 (NVL2) AAA-ATPase. We previously reported that ATP hydrolysis-defective NVL2 causes aberrant accumulation of WDR74 on the MTR4-exosome complex at the nucleolar periphery and in the nucleoplasm and that this nuclear redistribution of WDR74 leads to the unusual cleavage of the early rRNA precursor within the internal transcribed spacer 1 sequence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!