Variety pedigree contains a lot of information, including parental origin, breeding methods, genetic relationship, and so on. Studying them could reveal the evolution characteristics and rules of breeding and ultimately guide practice. The pedigrees of 326 wheat varieties from 1936 to 2017 in the history of the Sichuan Province was collected and analyzed in terms of breeding methods, parental composition, changes of high frequency parents and backbone parents, genetic contribution, distribution of translocation lines and synthetic germplasms. Over the past 80 years since 1930s, breeders have selected 387 direct parents from a large number of materials, made 256 combinations by means of cross breeding, and have released 314 varieties from them, which contributed directly to wheat breeding and production in Sichuan. Wheat breeding experienced a process from utilizing landraces, introducing foreign germplasm to creating breeding materials independently; high-frequency parents and backbone parents used for breeding gradually changed in different stage of the breeding history. Synthetic germplasms contributed greatly to wheat breeding in recent years. The consistency of breeding objectives will inevitably lead to the loss of genetic diversity and the fragility of genetic basis. In the future, the protection and utilization of genetic resources should be strengthened. In this review, the development of wheat breeding in Sichuan was summarized through pedigree analysis, in order to provide a reference for future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.16288/j.yczz.19-081 | DOI Listing |
Currently in wheat breeding, genome wide association studies (GWAS) have successfully revealed the genetic basis of complex traits such as nitrogen use efficiency (NUE) and its biological processes. In the GWAS model, thresholding is common strategy to indicate deviation of expected range of -(s), and it can be used to find the distribution of true positive associations under or over of test statistics. Therefore, the threshold plays a critical role to identify reliable and significant associations in wide genome, while the proportion of false positive results is relatively low.
View Article and Find Full Text PDFPlant Sci
January 2025
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China. Electronic address:
Premature senescence has a significant impact on the yield and quality of wheat crops. The process is controlled by multiple and intricate genetic pathways and regulatory elements, whereby the discovery of additional mutants provides important insights into the molecular basis of this important trait. Here, we developed a premature senescence wheat mutant je0874, its leaves started to show yellow before heading stage; with plant growth and development, the degree of yellowing worsened rapidly, and chlorophyll content in flag leaf was reduced by 93.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
Powdery mildew poses a significant threat to global wheat production and most cloned and deployed resistance genes for wheat breeding encode nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Although two genetically linked NLRs function together as an NLR pair have been reported in other species, this phenomenon has been relatively less studied in wheat. Here, we demonstrate that two tightly linked NLR genes, RXL and Pm5e, arranged in a head-to-head orientation, function together as an NLR pair to mediate powdery mildew resistance in wheat.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan.
Common wheat is allohexaploid, where it is difficult to obtain homoeolog-distinguished transcriptome data. Lasy-Seq, a type of 3' RNA-seq, is a technology efficient at obtaining homoeolog-distinguished transcriptomes. Here we applied Lasy-Seq to obtain transcriptome data from the seedlings, second leaves, and root tips of 25 common wheat lines mainly from East Asia.
View Article and Find Full Text PDFMol Plant
January 2025
National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
Although numerous studies have focused on the specific organs or tissues at different development stages or under various abiotic and biotic stress, our understanding of the distribution and relative abundance of phytohormones throughout the entire life cycle of plant organs and tissues remains insufficient. Here, we present a phytohormone atlas resource covering the quantitative analysis of eight major classes of phytohormones, comprising a total of 40 hormone-related compounds, throughout the complete life cycle of wheat. In combination with transcriptome analysis, we established a Wheat Phytohormone Metabolic Regulatory Network (WPMRN).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!