Objective: To evaluate the effects of a hypoenergetic diet (HD)associated with açaí pulp consumption on oxidative stress, antioxidant status and inflammatory biomarkers in overweight, dyslipidemic individuals.

Research Methods & Procedures: A randomized, double-blind, placebo-controlled clinical trial was conducted for 90 days. The study began with a 30-day run-in period, during which the intervention was exclusively a HD. Following this period, volunteers were randomized into 2 groups, and 200 g of either açaí pulp or placebo were added to the HD for 60 days. Anthropometric measurements, arterial pressure, oxidative stress and antioxidant status biomarkers, inflammatory and biochemical biomarkers were evaluated.

Results: Sixty-nine volunteers completed the clinical trial, 30 of which were in the HD + açaí group and 39 in HD + placebo group. Plasma 8-isoprostane concentrations significantly reduced 60 days after the intervention in the açaí group (p = 0.000), and there was a significant difference between the groups (açaí versus placebo; p = 0.037). Regarding inflammatory status parameters, a significant reduction in IL-6 was observed in the HD + açaí group (p = 0.042), and IFN-γ decreased significantly in both groups, HD + açaí (p = 0.001) and HD + placebo (p = 0.008); there were, however, no differences between the groups. Lipid profile parameters and blood glucose levels did not show change, regardless of nutritional intervention.

Conclusion: The addition of açaí to a HD, for 60 days, reduced oxidative stress and improved inflammation in overweight, dyslipidemic individuals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clnu.2019.06.008DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
antioxidant status
12
overweight dyslipidemic
12
effects hypoenergetic
8
hypoenergetic diet
8
pulp consumption
8
inflammatory biomarkers
8
biomarkers overweight
8
dyslipidemic individuals
8
açaí pulp
8

Similar Publications

Background: Amiodarone, a common antiarrhythmic drug, is known for its severe side effects, including pulmonary toxicity, which involves oxidative stress and apoptosis. Artemisinin, an antimalarial drug, has shown cytoprotective properties by inhibiting oxidative stress and apoptosis. This study investigated the protective effects of artemisinin against amiodarone-induced toxicity in human bronchial epithelial cells (BEAS-2B) and mouse models.

View Article and Find Full Text PDF

Radioactive brain injury, a severe complication ensuing from radiotherapy for head and neck malignancies, frequently manifests as cognitive impairment and substantially diminishes patients' quality of life. Despite its profound impact, the pathogenesis of this condition remains inadequately elucidated, and efficacious treatments are notably absent in clinical practice. Consequently, contemporary interventions predominantly focus on symptom alleviation rather than achieving a radical cure or reversing the injury process.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is the major cause of chronic liver disease worldwide, with no universally recognized effective treatments currently available. In recent years, ginseng and its principal active components, such as ginsenosides, have shown potential protective effects in the treatment of these liver diseases. In NAFLD, studies have demonstrated that ginseng can improve hepatic lipid metabolism, reduce inflammatory responses, and inhibit oxidative stress and fibrosis, thereby attenuating the progression of NAFLD.

View Article and Find Full Text PDF

Amplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed.

View Article and Find Full Text PDF

Unlabelled: Alzheimer's disease (AD) is a progressive neurological condition that causes brain shrinkage and cell death. This study aimed to identify the role of the NORAD/miR-26b-5p axis in AD. StarBase was used to examine the binding sequences of miR-26b-5p to LncRNA NORAD or its target genes, which were verified by a double luciferase reporter assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!