A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Remodeling of myocardial energy and metabolic homeostasis in a sheep model of persistent atrial fibrillation. | LitMetric

Remodeling of myocardial energy and metabolic homeostasis in a sheep model of persistent atrial fibrillation.

Biochem Biophys Res Commun

Department of Cardiology, Peking University First Hospital, Beijing, China; Department of Cardiology, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China. Electronic address:

Published: September 2019

Background: Atrial fibrillation (AF) is the most common progressive cardiac arrhythmia and is often associated with rapid contraction in both atria and ventricles. The role of atrial energy and metabolic homeostasis in AF progression is under-investigated.

Objectives: To determine the remodeling of energy metabolism during persistent AF and the effect of eplerenone (EPL), an aldosterone inhibitor, on metabolic homeostasis.

Methods: A nonsustained atrial pacing sheep model was developed to simulate the progression of AF from paroxysmal to persistent. Metabolomic and proteomic analyses at termination of the experiment were used to analyze atrial tissues obtained from sheep in sham, sugar pill (SP) and EPL-treated groups.

Results: Proteomic analysis indicated that compared to the sham group, in SP group, fatty acid (FA) synthesis, FA oxidation, tricarboxylic acid (TCA) cycle processes and amino acids (AAs) transport and metabolism were reduced, while glycolytic processes were increased. In metabolomic analysis, the levels of intermediate metabolites of the glycolytic pathways, including 2-phosphoglyceric acid (2 PG), 1,3-bisphosphoglyceric acid (1,3 PG), and pyruvate, HBP (uridine diphosphate-N-acetylglucosamine, UDP-GlcNAc), TCA (citrate) and AAs were greater while the levels of the majority of lipid classes, including phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylglycerol (PG), glycerophosphoglycerophosphates (PGP), glycerophosphoinositols (PI) and glycerophosphoserines (PS), were decreased in the atria of SP group than in those of sham group. EPL-pretreatment decreased the expression of glut4 and increased the content of acylcarnitines and lipids, such as lyso phospholipids, phospholipids and neutral lipids.

Conclusion: In the metabolic remodeling during AF, glucose and lipid metabolism were up- and down-regulated, respectively, to sustain TCA cycle anaplerosis. EPL partialy reversed the metabolic shifting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2019.05.112DOI Listing

Publication Analysis

Top Keywords

energy metabolic
8
metabolic homeostasis
8
sheep model
8
atrial fibrillation
8
sham group
8
tca cycle
8
metabolic
5
atrial
5
acid
5
remodeling myocardial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!