Early IgG2 in calves experimentally infected with Mycobacterium avium subsp. paratuberculosis.

Vet Immunol Immunopathol

Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Av. Chorroarín 280, C1427CWO, Buenos Aires, Argentina. Electronic address:

Published: July 2019

The diagnosis of the early stages of paratuberculosis, caused by Mycobacterium avium subsp. paratuberculosis (Map), is a cumbersome task. In this study, an experimental Map-infection model of calves was used to improve the knowledge of early antibody response and to evaluate different in-house ELISAs in the detection of subclinical paratuberculosis. Calves were challenged with Map strain A (n = 3) or Map strain C (n = 2) (Argentinean isolated strains) or mock infected (n = 3), and their specific humoral response was evaluated. The diagnostic ELISA (IgG against Map protoplasmic antigen; PPA) could not detect the infection throughout the experimental period (180 days post-infection; dpi), whereas the IgG2/PPA-ELISA was able to identify infected calves at least once during the experiment. In addition, the use of crude Map extract detected most of the infections from 60 dpi onwards. Antibodies were also characterized by immunoblot: IgG2-reactivity to antigens of molecular weight lower than 50 kDa was detected in all infected calves. The experimental Map-infection model of calves used allows the study of the early humoral immune response in paratuberculosis. The evaluation of IgG2 specific to antigens lighter than 50 kDa emerges as an interesting alternative in calves naturally infected with paratuberculosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetimm.2019.109886DOI Listing

Publication Analysis

Top Keywords

mycobacterium avium
8
avium subsp
8
subsp paratuberculosis
8
experimental map-infection
8
map-infection model
8
model calves
8
map strain
8
infected calves
8
calves
7
paratuberculosis
6

Similar Publications

Introduction The prevalence of nontuberculous mycobacteria (NTM) is higher in patients with structural lung disease and in immunocompromised patients. Lung involvement is the most common. The complex corresponds to the most identified agent.

View Article and Find Full Text PDF

Metformin improves infection by strengthening macrophage antimicrobial functions.

Front Immunol

December 2024

Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.

Introduction: The incidence and prevalence of infections with non-tuberculous mycobacteria such as (Mav) are increasing. Prolonged drug regimens, inherent antibiotic resistance, and low cure rates underscore the need for improved treatment, which may be achieved by combining standard chemotherapy with drugs targeting the host immune system. Here, we examined if the diabetes type 2 drug metformin could improve Mav-infection.

View Article and Find Full Text PDF

Paratuberculosis is an infectious disease caused by subspecies (MAP). Typically, ruminant animals including cattle, buffalo, goats, and sheep are infected with MAP. Animals get infected with MAP in a number of ways, such as by eating or drinking contaminated food or water, or by nursing from an infected mother who may have contaminated teats or directly shed the organism in milk or colostrum.

View Article and Find Full Text PDF

Mycobacterium avium complex bacteria cause chronic pulmonary disease (MAC-PD) in susceptible patients [1]. The recommended treatment regimen (rifampicin, ethambutol and azithromycin) achieves 65% cure rates but with considerable toxicity and drug-drug interactions [2,3]. Minocycline proved active in monotherapy experiments using the hollow-fibre model [4].

View Article and Find Full Text PDF

Background: The usefulness of bronchoscopy for the diagnosis of NTM pulmonary disease (NTM-PD) has been reported. However, performing bronchoscopy for aspirated sputum and airway secretion specimens (sputum aspirate specimens) in the region extending from the trachea down to the orifice of each segmental bronchus has been poorly documented. We evaluated the diagnostic yield of sputum aspirate specimens collected from the central airway using bronchoscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!