A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Benchmarking subcellular localization and variant tolerance predictors on membrane proteins. | LitMetric

Benchmarking subcellular localization and variant tolerance predictors on membrane proteins.

BMC Genomics

Department of Experimental Medical Science, BMC B13, Lund University, SE-22184, Lund, Sweden.

Published: July 2019

Background: Membrane proteins constitute up to 30% of the human proteome. These proteins have special properties because the transmembrane segments are embedded into lipid bilayer while extramembranous parts are in different environments. Membrane proteins have several functions and are involved in numerous diseases. A large number of prediction methods have been introduced to predict protein subcellular localization as well as the tolerance or pathogenicity of amino acid substitutions.

Results: We tested the performance of 22 tolerance predictors by collecting information on membrane proteins and variants in them. The analysis indicated that the best tools had similar prediction performance on transmembrane, inside and outside regions of transmembrane proteins and comparable to overall prediction performances for all types of proteins. PON-P2 had the highest performance followed by REVEL, MetaSVM and VEST3. Further, we tested with the high quality dataset also the performance of seven subcellular localization predictors on membrane proteins. We assessed separately the performance for single pass and multi pass membrane proteins. Predictions for multi pass proteins were more reliable than those for single pass proteins.

Conclusions: The predictors for variant effects had better performance than subcellular localization tools. The best tolerance predictors are highly reliable. As there are large differences in the performances of tools, end-users have to be cautious in method selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631444PMC
http://dx.doi.org/10.1186/s12864-019-5865-0DOI Listing

Publication Analysis

Top Keywords

membrane proteins
24
subcellular localization
16
tolerance predictors
12
proteins
10
predictors membrane
8
performance subcellular
8
single pass
8
multi pass
8
membrane
6
performance
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!