Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hypoxia-caused cardiocytes insults are closely correlated with ectopic expression of genes, which might be modulated by microRNAs (miRs). Quercetin exhibits a profound protective function against hypoxic damages in cardiomyocytes. Here, we aimed to investigate a possible underpinning. H9c2 cells were pre-administrated using quercetin before hypoxia treatment. The damages were assessed using viability, apoptosis and alteration of proteins associated with apoptosis and adenosine monophosphate-activated protein (AMPK) pathway. Transfection was conducted to enforce overexpression of miR-199a or silence of sirtuin 1 (sirt1) which were confirmed by qRT-PCR. Sirt1 protein was quantified by immunoblotting. A luciferase reporter was exploited to confirm the target relationship between miR-199a and sirt1 3'-untranslated region (3'-UTR). We found quercetin mitigated hypoxia-caused viability reduction and apoptosis with restoring apoptosis-associated protein and rescuing phosphorylation of AMPK. Quercetin flattened hypoxia-evoked overexpression of miR-199a. miR-199a abrogated the protective effects of quercetin against hypoxia-elicited damages. Quercetin elevated sirt1 which was repressed by hypoxia, while this effect was slight in miR-199a-overexpressed cells. miR-199a negatively mediated sirt1 expression through directly binding its 3'-UTR. Further, quercetin facilitated the phosphorylation of AMPK by up-regulating sirt1. Collectively, quercetin participated in repressing miR-199a which negatively modulated sirt1. Mechanically, through activating AMPK, quercetin protected cardiomyocytes cells against hypoxia-caused insults. Highlights Quercetin ameliorates hypoxia-evoked apoptosis and blockage of AMPK phosphorylation; The elevated miR-199a level is eased by quercetin, which might be a protective mechanism; Quercetin restores sirt1 level by repressing miR-199a expression; By mediating miR-199a and sirt1, AMPK phosphorylation is fortified by quercetin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/21691401.2019.1640711 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!