Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nano-layered double hydroxide (NLDH) decorated with Fe and Cu was applied as a novel heterogeneous catalyst for catalytic degradation of gentamicin by the electro-Fenton (EF) process. The EF process was equipped with graphite plate under aeration to electrochemically generate hydrogen peroxide in the solution. The characterization analyses confirmed the suitable structure of as-synthesized Cu-Fe-NLDH to be acted as catalyst for treating the target pollutant. The comparative study showed the highest removal efficiency of 91.3% when the Cu-Fe-NLDH-equipped EF process was applied in comparison with the Fenton (50%) and the electro-oxidation alone (25.6%). The acidic pHs favored the degradation of gentamicin. Increasing the current resulted in the enhanced degradation of gentamicin, while the excessive electrolyte concentration (0.1 mol/L) and catalyst dosage (1.5 g/L) led to the tangible drop in the reactor performance. At a specified reaction time, the injection of O gas enhanced the efficiency of the Cu-Fe-NLDH-equipped EF process. The presence of ethanol led to more suppressing effect than benzoquinone, indicating the dominant role of OH radical in the degradation of gentamicin compared with other free radical species such as O radical. Only 10% drop in the degradation efficiency of gentamicin was observed within 10 operational runs. The mineralization efficiency of about 77% was achieved after 300 min in terms of chemical oxygen demand (COD) removal. The intermediate byproducts generated during the destructive removal of gentamicin were also identified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2019.07.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!