The Ca induced Spontaneous Oscillatory Contraction (Ca-SPOC) of cardiac myofibrils oscillate with a period similar to resting heartbeat of several animal species, and its auto-oscillatory properties set the basic rhythm of cardiac contraction. To explain the dynamics of Ca-SPOC, the present paper constructs a novel chemical kinetical model based upon the cooperative behavior between the two heads of myosin II dimer, also considering the reaction-diffusion effect of ATP inside myocardial fibers. The simulation results show that the concentration of ATP inside myocardial fibers oscillates over time under some special conditions, together with the proportions of myosin II dimers in different states periodically changing with time, which contributes to produce the sustained oscillations of contractive tension. These results indicate that the SPOC of muscles may be partly due to chemical oscillation involved in the actomyosin ATPase cycle, which has been ignored by the previous theoretical studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bpc.2019.106221 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!