Characterization of the adenosinergic system in a zebrafish embryo radiotherapy model.

Comp Biochem Physiol C Toxicol Pharmacol

Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil. Electronic address:

Published: October 2019

Adenosine is a nucleoside that acts as a signaling molecule by activating P1 purinergic receptors (A, A, A and A). This activation is involved in immune responses, inflammation, and tissue remodeling and tumor progression. Gamma rays are a type of ionizing radiation widely adopted in radiotherapy of tumors. Although it brings benefits to the success of the therapeutic scheme, it can trigger cellular damages, inducing a perpetual inflammatory response that culminates in adverse effects and severe toxicity. Our study aims to characterize the adenosinergic system in a zebrafish embryo radiotherapy model, relating the adenosine signaling to the changes elicited by radiation exposure. To standardize the radiotherapy procedure, we established a toxicological profile after exposure. Zebrafish were irradiated with different doses of gamma rays (2, 5, 10, 15 and 20 Gy) at 24 hpf. Survival, hatching rate, heartbeats, locomotor activity and morphological changes were determined during embryos development. Although without significant difference in survival, gamma-irradiated embryos had their heartbeats increased and presented decreased hatching time, changes in locomotor activity and important morphological alterations. The exposure to 10 Gy disrupted the ecto-5'-nucleotidase/CD73 and adenosine deaminase/ADA enzymatic activity, impairing adenosine metabolism. We also demonstrated that radiation decreased A receptor gene expression, suggesting the involvement of extracellular adenosine in the changes prompted by radiotherapy. Our results indicate that the components of the adenosinergic system may be potential targets to improve radiotherapy and manage the tissue damage and toxicity of ionizing radiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2019.108572DOI Listing

Publication Analysis

Top Keywords

adenosinergic system
12
system zebrafish
8
zebrafish embryo
8
embryo radiotherapy
8
radiotherapy model
8
gamma rays
8
ionizing radiation
8
locomotor activity
8
activity morphological
8
radiotherapy
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!