Abdominal aortic aneurysms (AAA) are common and potentially life-threatening aortic dilatations, due to the effect of hemodynamic changes on the aortic wall. Previous research has shown a potential pathophysiological role for increased macroscopic aneurysmal wall stiffness; however, not investigating micromechanical stiffness. We aimed to compile a new protocol to examine micromechanical live aortic stiffness (elastic moduli), correlated to histological findings with quantitative immunofluorescence (QIF). Live AAA biopsies (n = 7) and non-dilated aortas (controls; n = 3) were sectioned. Local elastic moduli of aortic intima, media and adventitia were analysed in the direction towards the lumen and vice versa with nanoindentation. Smooth muscle cells (SMC), collagen and fibroblasts were examined using QIF. Nanoindentation of AAA vs. controls demonstrated a 4-fold decrease in elastic moduli (p = 0.022) for layers combined and a 26-fold decrease (p = 0.017) for media-to-intima direction. QIF of AAA vs. controls revealed a 4-, 3- and 6-fold decrease of SMC, collagen and fibroblasts, respectively (p = 0.036). Correlations were found between bidirectional intima and media measurements (ρ = 0.661, p = 0.038) and all QIF analyses (ρ = 0.857-0.905, p = 0.002-0.007). We present a novel protocol to analyse microscopic elastic moduli in live aortic tissues using nanoindentation. Hence, our preliminary findings of decreased elastic moduli and altered wall composition warrant further microscopic stiffness investigation to potentially clarify AAA pathophysiology and to explore potential treatment by wall strengthening. STATEMENT OF SIGNIFICANCE: Although extensive research on the pathophysiology of dilated abdominal aortas (aneurysms) has been performed, the exact underlying pathways are still largely unclear. Previously, the macroscopic stiffness of the pathologic and healthy aortic wall has been studied. This study however, for the first time, studied the microscopic stiffness changes in live tissue of dilated and non-dilated abdominal aortas. This new protocol provides a device to analyse the alterations on cellular level within their microenvironment, whereas previous studies studied the aorta as a whole. Outcomes of these measurements might help to better understand the underlying origin of the incidence and progression of aneurysms and other aortic diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2019.07.019 | DOI Listing |
Phys Chem Chem Phys
January 2025
College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, Henan, People's Republic of China.
Silicon germanium alloy materials have promising potential applications in the optoelectronic and photovoltaic industries due to their good electronic properties. However, due to the inherent brittleness of semiconductor materials, they are prone to rupturing under harsh working environments, such as high stress or high temperature. Here, we conducted a systematic search for silicon germanium alloy structures using a random sampling strategy, in combination with group theory and graph theory (RG), and 12 stable SiGe structures in 2-8 stacking orders were predicted.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China.
Long-term erosion by acidic solutions in karst regions leads to continuous deterioration of the physical and mechanical properties at the interfaces of engineering structures, adversely affecting their operational performance. To investigate the degradation patterns of the mechanical properties and corrosion mechanisms of the concrete‒limestone composite (CLC) after exposure to acidic corrosion, three kinds of CLC samples treated with acidic solutions of different pH values were fabricated. Mechanical property analysis was conducted via triaxial compression testing methods.
View Article and Find Full Text PDFSoft Matter
January 2025
Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, Istanbul Technical University, Istanbul, Maslak, 34469, Turkey.
A series of anionic poly(acrylamide--sodium acrylate)/poly(ethylene glycol), PAN/PEG, hybrids were conveniently synthesized free radical aqueous polymerization by integrating bentonite, kaolin, mica, graphene and silica, following a simple and eco-friendly crosslinking methodology. A comparative perspective was presented on how integrated nanofillers affect the physicochemical properties of hybrid gels depending on the differences in their structures. Among the five types of nanofillers, bentonite-integrated hybrid gel had the highest water absorbency, while graphene-integrated gel had the lowest.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Conservative Dentistry, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany.
Objective: It is hypothesized that the way nano- and micro-hybrid polymer-based composites are structured and cured impacts the way they respond to aging.
Material And Methods: A polymer-ceramic interpenetrating network composite (Vita Enamic/VE), an industrially polymerized (Brillinat CriosST/BC), and an in situ light-cured composite with discrete inorganic fillers (Admira Fusion5/AF5) were selected. Specimens (308) were either cut from CAD/CAM blocks (VE/BC) or condensed and cured in white polyoxymethylene molds (AF5) and subjected to four different aging conditions ( = 22): (a) 24 h storage in distilled water at 37 °C; (b) 24 h storage in distilled water at 37 °C followed by thermal cycling for 10,000 cycles 5/55 °C (TC); (c) TC followed by storage in a 75% ethanol-water solution; and (d) TC followed by a 3-week demineralization/remineralization cycling.
J Hypertens
December 2024
Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University.
Background: The arterial stiffening is attributed to the intrinsic structural stiffening and/or load-dependent stiffening by increased blood pressure (BP). The respective lifetime alterations and major determinants of the two components with normal aging are not clear.
Methods: A total of 3053 healthy adults (1922 women) aged 18-79 years were enrolled.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!