In this study, we aimed to investigate the role of dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), which is one of the most important regulators of Alzheimer's disease development, in islet β cell dysfunction and apoptosis. We found significantly increased expression of DYRK1A in both the hippocampus and pancreatic islets of APP/PS1 transgenic mice than in wild-type littermates. Furthermore, we observed that the overexpression of DYRK1A greatly aggravated β cell apoptosis. Most importantly, we found that DYRK1A directly interacted with insulin receptor substrate-2 (IRS2) and promoted IRS2 phosphorylation, leading to the proteasomal degradation of IRS2 and promotion of β cell dysfunction and apoptosis. These findings suggested that DYRK1A is a potential drug target in diabetes mellitus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2019.110659DOI Listing

Publication Analysis

Top Keywords

cell dysfunction
12
dysfunction apoptosis
12
degradation irs2
8
dyrk1a
6
dyrk1a aggravates
4
cell
4
aggravates cell
4
apoptosis
4
apoptosis promoting
4
promoting phosphorylation
4

Similar Publications

Interpreting Variants of Uncertain Significance in PCD: Abnormal Splicing Caused by a Missense Variant of DNAAF3.

Mol Genet Genomic Med

January 2025

The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.

Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.

Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.

View Article and Find Full Text PDF

Characterization of 3,3'-iminodipropionitrile (IDPN) damaged utricle transcriptome in the adult mouse utricle.

Front Mol Neurosci

December 2024

State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.

Utricle is an important vestibular sensory organ for maintaining balance. 3,3'-iminodipropionitrile (IDPN), a prototype nitrile toxin, has been reported to be neurotoxic and vestibulotoxic, and can be used to establish an damage model of vestibular dysfunction. However, the mechanism of utricular HCs damage caused by IDPN is unclear.

View Article and Find Full Text PDF

Elucidating the mechanism of stigmasterol in acute pancreatitis treatment: insights from network pharmacology and / experiments.

Front Pharmacol

December 2024

West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China.

Introduction: Acute pancreatitis (AP) is a severe inflammatory disease of the pancreas that could trigger a systemic inflammation and multi-organ dysfunction. Stigmasterol, a natural plant sterol found in various herbs and vegetables, exhibits a significant anti-inflammatory, antioxidant, and cholesterol-lowering effects. However, its therapeutic potential in AP have not been thoroughly investigated.

View Article and Find Full Text PDF

Background: Huntington disease (HD), a neurodegenerative autosomal dominant disorder, is characterized by involuntary choreatic movements with cognitive and behavioral disturbances. Up to now, no therapeutic strategies are available to completely ameliorate the progression of HD. has various pharmacologic effects such as antioxidant and anti-inflammatory activities.

View Article and Find Full Text PDF

Introduction: The COVID-19 pandemic has become a global health crisis, eliciting varying severity in infected individuals. This study aimed to explore the immune profiles between moderate and severe COVID-19 patients experiencing a cytokine storm and their association with mortality. This study highlights the role of PD-1/PD-L1 and the TIGIT/CD226/CD155/CD112 pathways in COVID-19 patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!