A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Facile Preparation of Hybrid Structure Based on Mesodome and Micropillar Arrays as Flexible Electronic Skin with Tunable Sensitivity and Detection Range. | LitMetric

The development of flexible pressure sensors has attracted increasing research interest for potential applications such as wearable electronic skins and human healthcare monitoring. Herein, we demonstrated a piezoresistive pressure sensor based on AgNWs-coated hybrid architecture consisting of mesoscaled dome and microscaled pillar arrays. We experimentally showed that the key three-dimensional component for a pressure sensor can be conveniently acquired using a vacuum application during the spin-coating process instead of a sophisticated and expensive approach. The demonstrated hybrid structure exhibits dramatically improved sensing capability when compared with the conventional one-fold dome-based counterpart in terms of the sensitivity and detectable pressure range. The optimized sensing performance, by integrating D1000 dome and D50P100 MPA, reaches a superior sensitivity of 128.29 kPa (0-200 Pa), 1.28 kPa (0.2-10 kPa), and 0.26 kPa (10-80 kPa) and a detection limit of 2.5 Pa with excellent durability. As a proof-of-concept, the pressure sensor based on the hybrid configuration was demonstrated as a versatile platform to accurately monitor different kinds of physical signals or pressure sources, e.g., wrist pulse, voice vibration, finger bending/touching, gas flow, as well as address spatial loading. We believe that the proposed architecture and developed methodology can be promising for future applications including flexible electronic devices, artificial skins, and interactive robotics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b08419DOI Listing

Publication Analysis

Top Keywords

pressure sensor
12
hybrid structure
8
flexible electronic
8
sensor based
8
pressure
6
kpa
5
facile preparation
4
hybrid
4
preparation hybrid
4
structure based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!