Cardiovascular fluid dynamics exhibit complex flow patterns, such as recirculation and vortices. Quantitative analysis of these complexities supports diagnosis, leading to early prediction of pathologies. Quality assurance of technologies that image such flows is challenging but essential, and to this end, a novel, cost-effective, portable, complex flow phantom is proposed and the design specifications are provided. The vortex ring is the flow of choice because it offers patterns comparable to physiological flows and is stable, predictable, reproducible and controllable. This design employs a piston/cylinder system for vortex ring generation, coupled to an imaging tank full of fluid, for vortex propagation. The phantom is motor-driven and by varying piston speed, piston displacement and orifice size, vortex rings with different characteristics can be produced. Two measurement methods, namely Laser-PIV and an optical/video technique, were used to test the phantom under a combination of configurations. Vortex rings with a range of travelling velocities (approximately 1-80 cm/s) and different output-orifice diameters (10-25 mm) were produced with reproducibility typically better than ±10%. Although ultrasound compatibility has been demonstrated, longer-term ambitions include adapting the design to support comparative studies with different modalities, such as MRA and X-ray-CTA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03091902.2019.1640309 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.
Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.
View Article and Find Full Text PDFPLoS One
January 2025
Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom.
Odours released by objects in natural environments can contain information about their spatial locations. In particular, the correlation of odour concentration timeseries produced by two spatially separated sources contains information about the distance between the sources. For example, mice are able to distinguish correlated and anti-correlated odour fluctuations at frequencies up to 40 Hz, while insect olfactory receptor neurons can resolve fluctuations exceeding 100 Hz.
View Article and Find Full Text PDFChaos
January 2025
School of Mathematical & Computer Sciences, Heriot-Watt University, EH14 4AS Edinburgh, United Kingdom.
Time-evolving graphs arise frequently when modeling complex dynamical systems such as social networks, traffic flow, and biological processes. Developing techniques to identify and analyze communities in these time-varying graph structures is an important challenge. In this work, we generalize existing spectral clustering algorithms from static to dynamic graphs using canonical correlation analysis to capture the temporal evolution of clusters.
View Article and Find Full Text PDFLangmuir
January 2025
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
The lateral flow assay is a strip-based analytical method for the portable and convenient detection of analytes of interest. It has the advantages of visual observation, autonomous sample flow, fast coloration time, minimal tedious operation procedures, and reliance on specialized instruments. However, the rough surface of the nitrocellulose membrane renders it difficult for the immobilized nucleic acids to remain in an ordered arrangement, and the immobilized nucleic acids are also liable to be digested in a complex matrix, inducing limited sensitivity and anti-interference.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.
Purpose: Dry eye disease (DED) is a common ocular surface inflammatory disease with a complex pathogenesis. Herein, the role and effect of gasdermin E (GSDME) in DED pathogenesis were explored.
Methods: In vitro, flow cytometry, Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) release assays were used to determine the effects of hyperosmotic stress on pyroptosis, apoptosis, and cell viability in human corneal epithelial cells (HCECs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!