Microfluidic water-in-oil droplets are a versatile tool for biological and biochemical applications due to the advantages of extremely small monodisperse reaction vessels in the pL-nL range. A key factor for the successful dissemination of this technology to life science laboratory users is the ability to produce microfluidic droplet generators and related accessories by low-entry barrier methods, which enable rapid prototyping and manufacturing of devices with low instrument and material costs. The direct, experimental side-by-side comparison of three commonly used additive manufacturing (AM) methods, namely fused deposition modeling (FDM), inkjet printing (InkJ), and stereolithography (SLA), is reported. As a benchmark, micromilling (MM) is used as an established method. To demonstrate which of these methods can be easily applied by the non-expert to realize applications in topical fields of biochemistry and microbiology, the methods are evaluated with regard to their limits for the minimum structure resolution in all three spatial directions. The suitability of functional SLA and MM chips to replace classic SU-8 prototypes is demonstrated on the basis of representative application cases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201901956 | DOI Listing |
PLoS One
January 2025
Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran.
Background: The challenges associated with traditional drug screening, such as high costs and long screening times, have led to an increase in the use of single-cell isolation technologies. Small sample volumes are required for high-throughput, cell-based assays to reduce assay costs and enable rapid sample processing. Using microfluidic chips, single-cell analysis can be conducted more effectively, requiring fewer reagents and maintaining biocompatibility.
View Article and Find Full Text PDFTherapie
December 2024
VIM Suresnes, UMR_0892, hôpital Foch, université Paris-Saclay, 92150 Suresnes, France.
Over the past decade, new in vitro biological models have emerged which can reproduce certain characteristics of human physiology and pathologies. From organoids to organs-on-chips, these new technologies are currently revolutionizing the entire chain of research and development in pharmacology. All stakeholders are thus involved, from academic laboratories to pharmaceutical companies, start-ups, and assessment agencies.
View Article and Find Full Text PDFSoft Matter
January 2025
Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
Microfluidic chips are powerful tools for investigating numerous variables including chemical and physical parameters on protein aggregation. This study investigated the aggregation of bovine serum albumin (BSA) in two different systems: a vial-based static system and a microfluidic chip-based dynamic system in which BSA aggregation was induced successfully. BSA aggregation induced in a microfluidic chip on a timescale of seconds enabled a dynamic investigation of the forces driving the aggregation process.
View Article and Find Full Text PDFBiomed Microdevices
January 2025
Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Suwannabhumi Canal Rd, Bang Pla, Bang Phli District, Samut Prakan, 10540, Thailand.
Microfluidic chips often face challenges related to the formation and accumulation of air bubbles, which can hinder their performance. This study investigated a bubble trapping mechanism integrated into microfluidic chip to address this issue. Microfluidic chip design includes a high shear stress section of fluid flow that can generate up to 2.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Physical and Colloid Chemistry, Kazan National Research Technological University, 420015 Kazan, Russia.
Microfluidics provides cutting-edge technological advancements for the in-channel manipulation and analysis of dissolved macromolecular species. The intrinsic potential of microfluidic devices to control key characteristics of polymer macromolecules such as their size distribution requires unleashing its full capacity. This work proposes a combined approach to analyzing the microscale behavior of polymer solutions and modifying their properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!