Tracking mite trophic interactions by multiplex PCR.

Pest Manag Sci

Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Castelló de la Plana, Spain.

Published: February 2020

Background: A thorough knowledge of trophic webs in agroecosystems is essential to achieve successful biological pest control. Phytoseiid mites are the most efficient natural enemies of tetranychid mites, which include several important pests worldwide. Nevertheless, phytoseiids may feed on other food sources including other microarthropods, plants and even other phytoseiids (intraguild predation), which can interfere with biological control services. Molecular gut content analysis is a valuable tool for characterizing trophic interactions, mainly when working on microarthropods such as mites. We have designed new primers for Phytoseiidae, Tetranychidae and Thysanoptera identification and they have been multiplexed in a polymerase chain reaction (PCR) together with universal plant primers. Additionally, we have estimated prey DNA detectability success over time (DS ) considering the most probable events in Spanish citrus orchards: the phytoseiid Euseius stipulatus as a predator, the phytoseiid Phytoseiulus persimilis as intraguild prey, and the thrips Frankliniella occidentalis and Anaphothrips obscurus as alternative prey to Tetranychus urticae.

Results: The designed multiplex PCR allows the identification of phytoseiids (both predator and intraguild prey) and detects alternative food sources mentioned above in the gut of the phytoseiid predator. DS for E. stipulatus as the predator were 1.3, 2.3 and 18.7 h post feeding for F. occidentalis, A. obscurus and P. persimilis as prey, respectively.

Conclusion: Tracking of the trophic relationships within the citrus acarofauna, and the unveiling of the role of alternative food sources will pave the way for enhancing T. urticae biological control. This multiplex PCR approach could be applicable for these purposes in similar agroecosystems. © 2019 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.5555DOI Listing

Publication Analysis

Top Keywords

multiplex pcr
12
food sources
12
trophic interactions
8
biological control
8
stipulatus predator
8
intraguild prey
8
alternative food
8
prey
5
tracking mite
4
trophic
4

Similar Publications

is a common etiological factor of hospital infections, which, in extreme cases, can lead to the death of patients. Most strains belonging to this bacterium species synthesize very dangerous toxins: toxin A (TcdA) and B (TcdB) and binary toxin (CDT). The aim of this study was to assess the suitability of agarose gel electrophoresis separation of multiplex PCR amplicons to investigate the toxinogenic potential of strains.

View Article and Find Full Text PDF

TLS and immune cell profiling: immunomodulatory effects of immunochemotherapy on tumor microenvironment in resectable stage III NSCLC.

Front Immunol

December 2024

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.

Background: The use of programmed death-1 (PD-1) inhibitors in the neoadjuvant setting for patients with resectable stage III NSCLC has revolutionized this field in recent years. However, there is still 40%-60% of patients do not benefit from this approach. The complex interactions between immune cell subtypes and tertiary lymphoid structures (TLSs) within the tumor microenvironment (TME) may influence prognosis and the response to immunochemotherapy.

View Article and Find Full Text PDF

Porcine hemagglutinating encephalomyelitis virus (PHEV), porcine pseudorabies virus (PRV), and classical swine fever virus (CSFV) are currently prevalent worldwide and cause similar neurological symptoms in infected pigs. It is very important to establish a detection method that can rapidly and accurately detect and differentiate these three viruses. Targeting the PHEV N gene, PRV gB gene, and CSFV 5' untranslated region (5'UTR), three pairs of specific primers and probes were designed, and a triplex crystal digital reverse transcription-PCR (cdRT-PCR) was developed to detect PHEV, PRV, and CSFV.

View Article and Find Full Text PDF

Background: Rapid diagnostic tests (RDTs) based on the detection of Plasmodium falciparum histidine rich protein 2 (PfHRP2) are widely used for the diagnostic of P. falciparum in Africa. However, deletions of the pfhrp2 and pfhrp3 genes can lead to false negative test results and compromise appropriate case management.

View Article and Find Full Text PDF

Coselection of BAC for Escherichia coli chromosomal DNA multiplex automated genome engineering.

Biotechnol Lett

December 2024

Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, No.1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu, People's Republic of China.

Recombineering (recombination-mediated genetic engineering) is a powerful strategy for bacterial genomic DNA and plasmid DNA modifications. CoS-MAGE improved over MAGE (multiplex automated genome engineering) by co-electroporation of an antibiotic resistance repair oligo along with the oligos for modification of the Escherichia coli chromosome. After several cycles of recombineering, the sub-population of mutants were selected among the antibiotic resistant colonies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!