Centrioles are core structural elements of both centrosomes and cilia. Although cytoplasmic granules called centriolar satellites have been observed around these structures, lack of a comprehensive inventory of satellite proteins impedes our understanding of their ancestry. To address this, we performed mass spectrometry (MS)-based proteome profiling of centriolar satellites obtained by affinity purification of their key constituent, PCM1, from sucrose gradient fractions. We defined an interactome consisting of 223 proteins, which showed striking enrichment in centrosome components. The proteome also contained new structural and regulatory factors with roles in ciliogenesis. Quantitative MS on whole-cell and centriolar satellite proteomes of acentriolar cells was performed to reveal dependencies of satellite composition on intact centrosomes. Although most components remained associated with PCM1 in acentriolar cells, reduced cytoplasmic and satellite levels were observed for a subset of centrosomal proteins. These results demonstrate that centriolar satellites and centrosomes form independently but share a substantial fraction of their proteomes. Dynamic exchange of proteins between these organelles could facilitate their adaptation to changing cellular environments during development, stress response and tissue homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627235PMC
http://dx.doi.org/10.15252/embj.2018101082DOI Listing

Publication Analysis

Top Keywords

centriolar satellites
16
centrosomal proteins
8
acentriolar cells
8
centriolar
5
proteins
5
satellites acentriolar
4
acentriolar assemblies
4
assemblies centrosomal
4
proteins centrioles
4
centrioles core
4

Similar Publications

Brain neurons utilize the primary cilium as a privileged compartment to detect and respond to extracellular ligands such as Sonic hedgehog (SHH). However, cilia in cerebellar granule cell (GC) neurons disassemble during differentiation through ultrastructurally unique intermediates, a process we refer to as cilia deconstruction. In addition, mature neurons do not reciliate despite having docked centrioles.

View Article and Find Full Text PDF

Dysfunction of the centrosome, the major microtubule-organizing center of the cell, is implicated in microcephaly. Haploinsufficiency of mixed-lineage leukemia (MLL/KMT2A) protein causes Wiedemann-Steiner syndrome (WSS), a neurodevelopmental disorder associated with microcephaly. However, whether MLL has a function at the centrosome is not clear.

View Article and Find Full Text PDF

Togaram1 is expressed in the neural tube and its absence causes neural tube closure defects.

HGG Adv

January 2025

Institute of Cell Biology and Neurobiology, Charite - Universitatsmedizin Berlin, Berlin, Germany; Department of Pediatric Neurology, Charité - Universitatsmedizin Berlin, Berlin, Germany; Center for Chronically Sick Children, Charité - Universitatsmedizin Berlin, Berlin, Germany; German Epilepsy Center for Children and Adolescents, Charité - Universitatsmedizin Berlin, Berlin, Germany. Electronic address:

Article Synopsis
  • The study investigates the connection between the TOGARAM gene family, specifically TOGARAM1, and spina bifida, a neural tube closure defect in embryonic development.
  • Researchers found that Togaram1 is important for proper neural tube formation and identified its role in cilia function and sonic hedgehog (Shh) signaling.
  • Findings from knockout mice and cell overexpression studies suggest that variations in TOGARAM1 could lead to defects that contribute to the development of spina bifida in patients.
View Article and Find Full Text PDF

Excessive proinflammatory cytokine release induced by pyroptosis plays a vital role in intestinal mucosal inflammation in ulcerative colitis (UC). Several pyroptosis-related factors are regulated by the centrosome. Pericentriolar material 1 (PCM1) is a primary component of centriolar satellites that is present as cytoplasmic granules around the centrosome.

View Article and Find Full Text PDF

Primary ciliary dyskinesia (PCD) is a hereditary disease caused by genes related to motile cilia. We report two male pediatric cases of PCD caused by hemizygous pathogenic variants in the OFD1 centriole and centriolar satellite protein () gene. The variants were NM_003611.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!