The specific heat capacity of nanofluids is a fundamental thermophysical property that measures the heat storage capacity of the nanofluids. is usually determined through experimental measurement. As it is known, experimental procedures are characterised with some complexities, which include, the challenge of preparing stable nanofluids and relatively long periods to conduct experiments. So far, two correlations have been developed to estimate the The accuracies of these models are still subject to further improvement for many nanofluid compositions. This study presents a four-input support vector regression (SVR) model hybridized with a Bayesian algorithm to predict the specific heat capacity of metallic oxides/ethylene glycol-based nanofluids. The bayesian algorithm was used to obtain the optimum SVR hyperparameters. 189 experimental data collected from published literature was used for the model development. The proposed model exhibits low average absolute relative deviation (AARD) and a high correlation coefficient (r) of 0.40 and 99.53 %, respectively. In addition, we analysed the accuracies of the existing analytical models on the considered nanofluid compositions. The model based on the thermal equilibrium between the nanoparticles and base fluid (model II) show good agreement with experimental results while the model based on simple mixing rule (model I) overestimated the specific heat capacity of the nanofluids. To further validate the superiority of the proposed technique over the existing analytical models, we compared various statistical errors for the three models. The AARD for the BSVR, model II, and model I are 0.40, 0.82 and 4.97, respectively. This clearly shows that the model developed has much better prediction accuracy than existing models in predicting the specific heat capacity of metallic oxides/ethylene glycol-based nanofluids. We believe the presented model will be important in the design of nanofluid-based applications due to its improved accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600000 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2019.e01882 | DOI Listing |
Biol Res
January 2025
School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China.
Background: Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear.
View Article and Find Full Text PDFBMC Genomics
January 2025
Sesoko Marine Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227, Japan.
Background: Rising seawater temperatures increasingly threaten coral reefs. The ability of coral larvae to withstand heat is crucial for maintaining reef ecosystems. Although several studies have investigated coral larvae's genetic responses to thermal stress, most relied on pooled sample sequencing, which provides population-level insights but may mask individual genotype variability.
View Article and Find Full Text PDFNat Commun
January 2025
Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
The pathological deposition of tau and amyloid-beta into insoluble amyloid fibrils are pathological hallmarks of Alzheimer's disease. Molecular chaperones are important cellular factors contributing to the regulation of tau misfolding and aggregation. Here we reveal an Hsp90-independent mechanism by which the co-chaperone p23 as well as a molecular complex formed by two co-chaperones, p23 and FKBP51, modulates tau aggregation.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Ocean Observation and Forecasting and Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
Storage of anthropogenic heat in the oceans is spatially inhomogeneous, impacting regional climates and human societies. Climate models project enhanced heat storage in the mid-latitude North Pacific (MNP) and much weaker storage in the tropical Pacific. However, the observed heat storage during the past half-century shows a more complex pattern, with limited warming in the MNP and enhanced warming in the northwest tropical Pacific.
View Article and Find Full Text PDFEnviron Int
January 2025
Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China.
A growing body of evidence suggests that non-optimal ambient temperatures are associated with increased incidence rate and mortality of thromboembolic diseases. We aim to investigate the association between apparent temperature (AT) and coagulation, which is a central pathological link in the formation of thrombi. In this study, we conducted a time series analysis using data from 18,894 participants collected from a health check-up center in Beijing between 2014 and 2023, and validated our findings using 20,549 participants from an andrology outpatient clinic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!