A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mn-Catalyzed Electrochemical Chloroalkylation of Alkenes. | LitMetric

Mn-Catalyzed Electrochemical Chloroalkylation of Alkenes.

ACS Catal

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.

Published: January 2019

The heterodifunctionalization of alkenes is an efficient method for synthesizing highly functionalized organic molecules. In this report, we describe the use of anodically coupled electrolysis for the catalytic chloroalkylation of alkenes-a reaction that constructs vicinal C-C and C-Cl bonds in a single synthetic operation-from malononitriles or cyanoacetates and NaCl. Knowledge of the persistent radical effect guided the reaction design and development. A series of controlled experiments, including divided-cell electrolysis that compartmentalized the anodic and cathodic events, allowed us to identify the key radical intermediates and the pathway to their electrocatalytic formation. Cyclic voltammetry data further support the proposed mechanism entailing the parallel, Mn-mediated generation of two radical intermediates in an anodically coupled electrolysis followed by their selective addition to the alkene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6625787PMC
http://dx.doi.org/10.1021/acscatal.8b03209DOI Listing

Publication Analysis

Top Keywords

anodically coupled
8
coupled electrolysis
8
radical intermediates
8
mn-catalyzed electrochemical
4
electrochemical chloroalkylation
4
chloroalkylation alkenes
4
alkenes heterodifunctionalization
4
heterodifunctionalization alkenes
4
alkenes efficient
4
efficient method
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!