Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Rosuvastatin calcium (ROSCa) nanoparticles were fabricated by planetary ball mill to enhance ROSCa dissolution rate and bioavailability.
Methods: Milling time factors (milling cycle time and number as well as pause time) were explored. The effect of different milling ball size, speed, and solid-to-solvent ratio were also studied using Box-Behnken factorial design. The fabricated nanoparticles were evaluated in term of physicochemical properties and long-term stability.
Results: The obtained data revealed that the integrated formulation and process factors should be monitored to obtain desirable nanoparticle attributes in terms of particle size, zeta potential, dissolution rate, and bioavailability. The optimized ROSCa nanoparticles prepared by milling technique showed a significant enhancement in the dissolution rate by 1.3-fold and the plasma concentration increased by 2-fold (<0.05). Moreover, stability study showed that the optimized formula of ROSCa nanoparticles exhibits higher stability in long-term stability conditions at 30°C with humidity of 60%.
Conclusion: Formulation of ROSCa as nanoparticles using milling technique showed a significant enhancement in both dissolution rate and plasma concentration as well as stability compared with untreated drug.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603996 | PMC |
http://dx.doi.org/10.2147/IJN.S207301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!