Spatial memory deficits in mice induced by chemotherapeutic agents are prevented by acetylcholinesterase inhibitors.

Cancer Chemother Pharmacol

Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, 3515 East Fletcher Avenue, Tampa, FL, 33613-4706, USA.

Published: September 2019

Purpose: These studies determined whether the acetylcholinesterase inhibitors, donepezil and galantamine, both of which are approved for the treatment of cognitive deficits in Alzheimer's disease, can prevent or reverse spatial memory deficits in mice induced by cyclophosphamide and doxorubicin, cytotoxic agents commonly used to treat breast cancer.

Methods: Female BALB/C mice were trained in the Morris water maze to identify the location of a submerged platform, and, following baseline assessment of spatial memory, received injections of cyclophosphamide and doxorubicin once per week for 4 weeks to impair spatial memory. Saline or acetylcholinesterase inhibitors were administered daily either concurrent with the chemotherapy injections (prevention) or beginning 1 week following the final chemotherapy injections (reversal), and spatial memory was assessed weekly.

Results: Spatial memory declined during and following weekly injections of cyclophosphamide and doxorubicin, and was unaltered when the acetylcholinesterase inhibitors were administered following the manifestation of chemotherapy-induced deficits. In contrast, spatial memory of mice receiving the acetylcholinesterase inhibitors concurrent with chemotherapy did not differ from that at baseline.

Conclusions: Results indicate that chemotherapy-induced spatial memory deficits in mice can be prevented, but not reversed by the use of acetylcholinesterase inhibitors concomitant with chemotherapy, suggesting that these agents should be investigated further for the prevention of chemobrain.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00280-019-03881-8DOI Listing

Publication Analysis

Top Keywords

spatial memory
32
acetylcholinesterase inhibitors
24
memory deficits
12
deficits mice
12
cyclophosphamide doxorubicin
12
spatial
8
mice induced
8
injections cyclophosphamide
8
inhibitors administered
8
concurrent chemotherapy
8

Similar Publications

The hippocampus forms memories of our experiences by registering processed sensory information in coactive populations of excitatory principal cells or ensembles. Fast-spiking parvalbumin-expressing inhibitory neurons (PV INs) in the dentate gyrus (DG)-CA3/CA2 circuit contribute to memory encoding by exerting precise temporal control of excitatory principal cell activity through mossy fiber-dependent feed-forward inhibition. PV INs respond to input-specific information by coordinating changes in their intrinsic excitability, input-output synaptic-connectivity, synaptic-physiology and synaptic-plasticity, referred to here as experience-dependent PV IN plasticity, to influence hippocampal functions.

View Article and Find Full Text PDF

Artificial light sources, particularly blue light, have raised concerns about their impact on biological health and behavior. In this study, we explored the effects of blue light on the locomotion and cognitive functions of early adult Drosophila melanogaster. Our experiments were conducted in a custom-designed behavioral arena to assess how blue light influences these parameters.

View Article and Find Full Text PDF

Purpose Of The Review: Clinical trials suggest that dietary anthocyanins may enhance cognitive function. This systematic literature review and meta-analysis aimed to identify the effect of anthocyanin on cognition and mood in adults.

Recent Findings: Using a random-effects model, Hedge's g scores were calculated to estimate the effect size.

View Article and Find Full Text PDF

Whether working memory (WM) is encoded by persistent activity using attractors or by dynamic activity using transient trajectories has been debated for decades in both experimental and modeling studies, and a consensus has not been reached. Even though many recurrent neural networks (RNNs) have been proposed to simulate WM, most networks are designed to match respective experimental observations and show either transient or persistent activities. Those few which consider networks with both activity patterns have not attempted to directly compare their memory capabilities.

View Article and Find Full Text PDF

Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (T) compartment in the meninges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!