The LFER 150 PET/CT device (large-field-of-view extreme-resolution portable research imager) is a system for nonhuman primate (NHP) imaging. The objective of this study was to evaluate the performance of the system using the National Electrical Manufacturers Association NU 4-2008 standard protocol. As a preliminary in vivo evaluation of the system, a PET measurement in an NHP was also performed. Resolution, sensitivity, image quality, and noise-equivalent count rate (NECR) were measured. NECR measurement was performed with a ratlike phantom and a monkeylike phantom. A Derenzo phantom experiment was performed to test the resolution using 3-dimensional ordered-subset expectation maximization reconstruction. One cynomolgus monkey (4.5 kg, intravenous ketamine/xylazine anesthesia) was examined with the dopamine transporter radioligand F-FE-PE2I (94 MBq) to evaluate the in vivo performance of the system. List-mode PET data acquired for 93 min were reconstructed into 38 frames with the Tera-Tomo 3-dimensional engine. Binding potential for caudate nucleus, putamen, and substantia nigra was evaluated using the simplified reference tissue model. Radial full-width half-maximum resolution using Fourier rebinning and a 2-dimensional filtered backprojection algorithm was less than 2.2 mm and less than 3.2 mm in the central 60-mm-diameter and 140-mm-diameter regions, respectively. Maximum sensitivity in the 400- to 600-keV and 250- to 750-keV energy windows was 30.03 cps/kBq (3.3%) and 49.11 cps/kBq (5.4%), respectively. The uniformity in the image-quality phantom was 3.3%, and the spillover ratio for air and water was 0.1. The peak of the NECR curve was 430 kcps (at 115 MBq) with the ratlike phantom and 78 kcps (at 139 MBq) with the monkeylike phantom. Rods of the Derenzo phantom with 1-mm diameter could be distinguished by eye. In the NHP experiment, binding potentials in the caudate, putamen, and substantia nigra (4.9, 4.9, and 1, respectively) were similar to those previously reported using the same radioligand and a high-resolution research tomograph. The results obtained from phantom experiments and 1 representative PET measurement in an NHP confirm that the LFER 150 is a high-resolution PET/CT system with suitable performance for brain imaging in NHPs.

Download full-text PDF

Source
http://dx.doi.org/10.2967/jnumed.117.206243DOI Listing

Publication Analysis

Top Keywords

nonhuman primate
8
pet/ct system
8
lfer 150
8
performance system
8
pet measurement
8
measurement nhp
8
phantom
8
ratlike phantom
8
monkeylike phantom
8
derenzo phantom
8

Similar Publications

Buprenorphine is an agonist at the mu opioid receptor (MOR) and antagonist at the kappa (KOR) and delta (DOR) receptors and a nociceptin receptor (NOR) ligand. Buprenorphine has a relatively low intrinsic efficacy for G-proteins and a long brain and MOR dwell time. Buprenorphine ceiling on respiratory depression has theoretically been related multiple factors such as low intrinsic efficacy at MOR, binding to six-transmembrane MOR and interactions in MOR/NOR heterodimers.

View Article and Find Full Text PDF

The Evolution of Immunosuppressive Therapy in Pig-to-Nonhuman Primate Organ Transplantation.

Transpl Int

January 2025

Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.

An overview is provided of the evolution of strategies towards xenotransplantation during the past almost 40 years, focusing on advances in gene-editing of the organ-source pigs, pre-transplant treatment of the recipient, immunosuppressive protocols, and adjunctive therapy. Despite initial challenges, including hyperacute rejection resulting from natural (preformed) antibody binding and complement activation, significant progress has been made through gene editing of the organ-source pigs and refinement of immunosuppressive regimens. Major steps were the identification and deletion of expression of the three known glycan xenoantigens on pig vascular endothelial cells, the transgenic expression of human "protective" proteins, e.

View Article and Find Full Text PDF

Development of nebulized inhalation delivery for fusion-inhibitory lipopeptides to protect non-human primates against Nipah-Bangladesh infection.

Antiviral Res

January 2025

CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France.

Nipah virus (NiV) is a lethal zoonotic paramyxovirus that can be transmitted from person to person through the respiratory route. There are currently no licensed vaccines or therapeutics. A lipopeptide-based fusion inhibitor was developed and previously evaluated for efficacy against the NiV-Malaysia strain.

View Article and Find Full Text PDF

Spatio-temporal transformers for decoding neural movement control.

J Neural Eng

January 2025

Department of Information Engineering, Electronics and Telecommunications, University of Rome La Sapienza, Piazzale Aldo Moro 5, Rome, 00185, ITALY.

Deep learning tools applied to high-resolution neurophysiological data have significantly progressed, offering enhanced decoding, real-time processing, and readability for practical applications. However, the design of artificial neural networks to analyze neural activity in vivo remains a challenge, requiring a delicate balance between efficiency in low-data regimes and the interpretability of the results. Approach: To address this challenge, we introduce a novel specialized transformer architecture to analyze single-neuron spiking activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!