Hydroxyapatite powder was mixed into photosensitive resin to form complex shape scaffold using SLA-3D printing technology, and then the final entity was obtained successively by debinding and sintering. It is crucial to confirm whether the prepared hydroxyapatite scaffold have the toxic effects after our designed printing, debinding, and sintering processes because the photosensitive resin in the starting printing paste is poisonous to cells. To investigate these issues in details, thermogravimetric analysis (TG), differential scanning calorimetry (DSC), in vitro cytotoxicity test, and implantation pre-experiment in the rabbit parietal were performed, aiming to develop the SLA-3D prepared hydroxyapatite scaffold. Through thermal analysis, it was proved that photosensitive resin would be completely pyrolyzed at temperature ranging from 350 °C to 580 °C, corresponding to a secondary chemical reaction mechanism. Combined with cytotoxicity test results, it is unquestionable that the toxic substances would be totally decomposed after debinding process and a good biocompatible HAP samples could be obtained. The finally prepared HAP samples with micro-holes showed good biosafety in pre-experiment of the rabbit parietal implantation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2019.06.031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!